Marival V Bermejo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10570/publications.pdf

Version: 2024-02-01

135 papers 4,475 citations

147801 31 h-index 61 g-index

164 all docs

164 docs citations

times ranked

164

4960 citing authors

#	Article	IF	CITATIONS
1	Molecular Properties of WHO Essential Drugs and Provisional Biopharmaceutical Classification. Molecular Pharmaceutics, 2004, 1, 85-96.	4.6	691
2	A Provisional Biopharmaceutical Classification of the Top 200 Oral Drug Products in the United States, Great Britain, Spain, and Japan. Molecular Pharmaceutics, 2006, 3, 631-643.	4.6	493
3	PAMPAâ€"a drug absorption in vitro model. European Journal of Pharmaceutical Sciences, 2004, 21, 429-441.	4.0	187
4	Usefulness of Caco-2/HT29-MTX and Caco-2/HT29-MTX/Raji B Coculture Models To Predict Intestinal and Colonic Permeability Compared to Caco-2 Monoculture. Molecular Pharmaceutics, 2017, 14, 1264-1270.	4.6	123
5	Pharmacokinetics in Drug Discovery. Journal of Pharmaceutical Sciences, 2008, 97, 654-690.	3.3	116
6	Low Buffer Capacity and Alternating Motility along the Human Gastrointestinal Tract: Implications for <i>in Vivo</i> Dissolution and Absorption of Ionizable Drugs. Molecular Pharmaceutics, 2017, 14, 4281-4294.	4.6	94
7	Cyclometalated Iminophosphorane Gold(III) and Platinum(II) Complexes. A Highly Permeable Cationic Platinum(II) Compound with Promising Anticancer Properties. Journal of Medicinal Chemistry, 2015, 58, 5825-5841.	6.4	88
8	Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Aciclovir. Journal of Pharmaceutical Sciences, 2008, 97, 5061-5073.	3.3	79
9	Provisional Classification and <i>in Silico</i> Study of Biopharmaceutical System Based on Caco-2 Cell Permeability and Dose Number. Molecular Pharmaceutics, 2013, 10, 2445-2461.	4.6	78
10	In Silico Prediction of Cacoâ€2 Cell Permeability by a Classification QSAR Approach. Molecular Informatics, 2011, 30, 376-385.	2.5	76
11	Purely in Silico BCS Classification: Science Based Quality Standards for the World's Drugs. Molecular Pharmaceutics, 2013, 10, 4378-4390.	4.6	66
12	In-situ intestinal rat perfusions for human Fabs prediction and BCS permeability class determination: Investigation of the single-pass vs. the Doluisio experimental approaches. International Journal of Pharmaceutics, 2015, 480, 1-7.	5.2	63
13	A topological sub-structural approach for predicting human intestinal absorption of drugs. European Journal of Medicinal Chemistry, 2004, 39, 905-916.	5.5	60
14	Giardiasis: Characteristics, Pathogenesis and New Insights About Treatment. Current Topics in Medicinal Chemistry, 2018, 18, 1287-1303.	2.1	58
15	In Situ Perfusion Model in Rat Colon for Drug Absorption Studies: Comparison with Small Intestine and Caco-2 Cell Model. Journal of Pharmaceutical Sciences, 2015, 104, 3136-3145.	3.3	57
16	A topological substructural approach for the prediction of P-glycoprotein substrates. Journal of Pharmaceutical Sciences, 2006, 95, 589-606.	3.3	53
17	A Mechanistic Physiologically-Based Biopharmaceutics Modeling (PBBM) Approach to Assess the In Vivo Performance of an Orally Administered Drug Product: From IVIVC to IVIVP. Pharmaceutics, 2020, 12, 74.	4.5	49
18	Segmental-dependent permeability throughout the small intestine following oral drug administration: Single-pass vs. Doluisio approach to in-situ rat perfusion. International Journal of Pharmaceutics, 2016, 515, 201-208.	5 . 2	46

#	Article	IF	CITATIONS
19	A novel approach to determining physicochemical and absorption properties of 6-fluoroquinolone derivatives: experimental assessment. European Journal of Pharmaceutics and Biopharmaceutics, 2002, 53, 317-325.	4.3	45
20	Covalently crosslinked organophosphorous derivatives-chitosan hydrogel as a drug delivery system for oral administration of camptothecin. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 136, 174-183.	4.3	45
21	Evaluation and optimized selection of supersaturating drug delivery systems of posaconazole (BCS) Tj ETQq1 Journal of Pharmaceutical Sciences, 2018, 115, 258-269.	1 0.784314 4.0	rgBT /Overlo 43
22	New Insights of Oral Colonic Drug Delivery Systems for Inflammatory Bowel Disease Therapy. International Journal of Molecular Sciences, 2020, 21, 6502.	4.1	43
23	The Use of Ruleâ€Based and QSPR Approaches in ADME Profiling: A Case Study on Cacoâ€2 Permeability. Molecular Informatics, 2013, 32, 459-479.	2.5	42
24	lonic Hydrogel Based on Chitosan Cross-Linked with 6-Phosphogluconic Trisodium Salt as a Drug Delivery System. Biomacromolecules, 2018, 19, 1294-1304.	5.4	41
25	Formulation predictive dissolution (fPD) testing to advance oral drug product development: An introduction to the US FDA funded â€~21st Century BA/BE' project. International Journal of Pharmaceutics, 2018, 548, 120-127.	5.2	41
26	TOPSâ€MODE Approach for the Prediction of Blood–Brain Barrier Permeation. Journal of Pharmaceutical Sciences, 2004, 93, 1701-1717.	3.3	40
27	Validation of a biophysical drug absorption model by the PATQSAR system. Journal of Pharmaceutical Sciences, 1999, 88, 398-405.	3.3	39
28	<i>In vitroâ€"in vivo</i> correlations: general concepts, methodologies and regulatory applications. Drug Development and Industrial Pharmacy, 2015, 41, 1935-1947.	2.0	36
29	Kinetic modelling of passive transport and active efflux of a fluoroquinolone across Caco-2 cells using a compartmental approach in NONMEM. Xenobiotica, 2005, 35, 1067-1088.	1.1	35
30	Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L.) extract polyphenols and terpenoids in Caco-2 cell monolayers. PLoS ONE, 2017, 12, e0172063.	2.5	35
31	Transintestinal secretion of ciprofloxacin, grepafloxacin and sparfloxacin: in vitro and in situ inhibition studies. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 55, 241-246.	4.3	32
32	Bias in Estimation of Transporter Kinetic Parameters from Overexpression Systems: Interplay of Transporter Expression Level and Substrate Affinity. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 133-144.	2.5	32
33	Intestinal Permeability Study of Clinically Relevant Formulations of Silibinin in Caco-2 Cell Monolayers. International Journal of Molecular Sciences, 2019, 20, 1606.	4.1	32
34	Variability of permeability estimation from different protocols of subculture and transport experiments in cell monolayers. Journal of Pharmacological and Toxicological Methods, 2015, 71, 21-32.	0.7	31
35	In situ kinetic modelling of intestinal efflux in rats: functional characterization of segmental differences and correlation within vitro results. Biopharmaceutics and Drug Disposition, 2007, 28, 229-239.	1.9	29
36	Influence of polyunsaturated fatty acids on Cortisol transport through MDCK and MDCK-MDR1 cells as blood–brain barrier in vitro model. European Journal of Pharmaceutical Sciences, 2011, 42, 290-299.	4.0	29

#	Article	IF	Citations
37	Intrinsic Absolute Bioavailability Prediction in Rats Based on In Situ Absorption Rate Constants and/or In Vitro Partition Coefficients: 6â€Fluoroquinolones. Journal of Pharmaceutical Sciences, 2000, 89, 1395-1403.	3.3	28
38	lon-pair strategy for enabling amifostine oral absorption: Rat in situ and in vivo experiments. European Journal of Pharmaceutical Sciences, 2013, 49, 499-504.	4.0	28
39	Permeability Study of Polyphenols Derived from a Phenolic-Enriched Hibiscus sabdariffa Extract by UHPLC-ESI-UHR-Qq-TOF-MS. International Journal of Molecular Sciences, 2015, 16, 18396-18411.	4.1	28
40	Investigating drug absorption from the colon: Single-pass vs. Doluisio approaches to in-situ rat large-intestinal perfusion. International Journal of Pharmaceutics, 2017, 527, 135-141.	5.2	28
41	Classification of WHO Essential Oral Medicines for Children Applying a Provisional Pediatric Biopharmaceutics Classification System. Pharmaceutics, 2019, 11, 567.	4.5	27
42	Mechanistic analysis and experimental verification of bicarbonate-controlled enteric coat dissolution: Potential in vivo implications. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 139, 47-58.	4.3	27
43	Investigating the Discriminatory Power of BCS-Biowaiver <i>in Vitro</i> Methodology to Detect Bioavailability Differences between Immediate Release Products Containing a Class I Drug. Molecular Pharmaceutics, 2015, 12, 3167-3174.	4.6	26
44	In Vitro Dissolution as a Tool for Formulation Selection: Telmisartan Two-Step IVIVC. Molecular Pharmaceutics, 2018, 15, 2307-2315.	4.6	26
45	Compared effects of synthetic and natural bile acid surfactants on xenobiotic absorption I. Studies with polysorbate and taurocholate in rat colon. International Journal of Pharmaceutics, 1991, 69, 221-231.	5.2	25
46	PLGA nanoparticles are effective to control the colonic release and absorption on ibuprofen. European Journal of Pharmaceutical Sciences, 2018, 115, 119-125.	4.0	25
47	Drug penetration across the blood–brain barrier: an overview. Therapeutic Delivery, 2010, 1, 535-562.	2.2	24
48	Gastric emptying and intestinal appearance of nonabsorbable drugs phenol red and paromomycin in human subjects: A multi-compartment stomach approach. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 129, 162-174.	4.3	24
49	Kinetic modelling of the intestinal transport of sarafloxacin. Studiesin situin rat andin vitroin Caco-2 cells. Journal of Drug Targeting, 2005, 13, 199-212.	4.4	23
50	An Exploratory Study of Two Caco-2 Cell Models for Oral Absorption: A Report on Their Within-laboratory and Between-laboratory Variability, and Their Predictive Capacity. ATLA Alternatives To Laboratory Animals, 2010, 38, 367-386.	1.0	23
51	Validation of phenol red versus gravimetric method for water reabsorption correction and study of gender differences in Doluisio's absorption technique. European Journal of Pharmaceutical Sciences, 2014, 62, 105-110.	4.0	23
52	Closed-Loop Doluisio (Colon, Small Intestine) and Single-Pass Intestinal Perfusion (Colon, Jejunum) in Rat—Biophysical Model and Predictions Based on Caco-2. Pharmaceutical Research, 2018, 35, 2.	3.5	23
53	Mass Transport Analysis of the Enhanced Buffer Capacity of the Bicarbonate–CO ₂ Buffer in a Phase-Heterogenous System: Physiological and Pharmaceutical Significance. Molecular Pharmaceutics, 2018, 15, 5291-5301.	4.6	23
54	Computer simulations of bioequivalence trials: Selection of design and analyte in BCS drugs with first-pass hepatic metabolism: Linear kinetics (I). European Journal of Pharmaceutical Sciences, 2009, 36, 137-146.	4.0	22

#	Article	IF	Citations
55	Hydrogels: an interesting strategy for smart drug delivery. Therapeutic Delivery, 2013, 4, 157-160.	2.2	22
56	A promising camptothecin derivative: Semisynthesis, antitumor activity and intestinal permeability. European Journal of Medicinal Chemistry, 2014, 83, 366-373.	5.5	22
57	Gastric absorption of acidic xenobiotics in the rat: Biophysical interpretation of an apparently atypical behaviour. International Journal of Pharmaceutics, 1990, 64, 127-138.	5.2	21
58	In silico prediction of central nervous system activity of compounds. Identification of potential pharmacophores by the TOPS–MODE approach. Bioorganic and Medicinal Chemistry, 2004, 12, 5833-5843.	3.0	21
59	Comparison of segmental-dependent permeability in human and in situ perfusion model in rat. European Journal of Pharmaceutical Sciences, 2017, 107, 191-196.	4.0	21
60	Linking the Gastrointestinal Behavior of Ibuprofen with the Systemic Exposure between and within Humansâ€"Part 1: Fasted State Conditions. Molecular Pharmaceutics, 2018, 15, 5454-5467.	4.6	21
61	Pharmacokinetics, bioavailability and absorption of flumequine in the rat. European Journal of Pharmaceutics and Biopharmaceutics, 1999, 48, 253-258.	4.3	20
62	Mathematical modelling of in situ and in vitro efflux of ciprofloxacin and grepafloxacin. International Journal of Pharmaceutics, 2006, 307, 33-41.	5.2	20
63	QSPR in Oral Bioavailability: Specificity or Integrality?. Mini-Reviews in Medicinal Chemistry, 2012, 12, 534-550.	2.4	20
64	Innovative in Vitro Method To Predict Rate and Extent of Drug Delivery to the Brain across the Blood–Brain Barrier. Molecular Pharmaceutics, 2013, 10, 3822-3831.	4.6	19
65	Measuring the Impact of Gastrointestinal Variables on the Systemic Outcome of Two Suspensions of Posaconazole by a PBPK Model. AAPS Journal, 2018, 20, 57.	4.4	19
66	In vitro model for predicting the access and distribution of drugs in the brain using hCMEC/D3 cells. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 120-126.	4.3	19
67	Computer simulations of bioequivalence trials: Selection of design and analyte in BCS drugs with first-pass hepatic metabolism: Part II. Non-linear kinetics. European Journal of Pharmaceutical Sciences, 2009, 36, 147-156.	4.0	18
68	Modified Nonsink Equation for Permeability Estimation in Cell Monolayers: Comparison with Standard Methods. Molecular Pharmaceutics, 2014, 11, 1403-1414.	4.6	18
69	Assessment of the Regulatory Methods for the Comparison of Highly Variable Dissolution Profiles. AAPS Journal, 2016, 18, 1550-1561.	4.4	18
70	Gated Mesoporous Silica Nanocarriers for a "Two-Step―Targeted System to Colonic Tissue. Molecular Pharmaceutics, 2017, 14, 4442-4453.	4.6	18
71	Determination of intestinal permeability using in situ perfusion model in rats: Challenges and advantages to BCS classification applied to digoxin. International Journal of Pharmaceutics, 2018, 551, 148-157.	5.2	18
72	Biopharmaceutical optimization in neglected diseases for paediatric patients by applying the provisional paediatric biopharmaceutical classification system. British Journal of Clinical Pharmacology, 2018, 84, 2231-2241.	2.4	18

#	Article	IF	Citations
73	Unraveling the behavior of oral drug products inside the human gastrointestinal tract using the aspiration technique: History, methodology and applications. European Journal of Pharmaceutical Sciences, 2020, 155, 105517.	4.0	18
74	Semisynthesis, Cytotoxic Activity, and Oral Availability of New Lipophilic 9-Substituted Camptothecin Derivatives. ACS Medicinal Chemistry Letters, 2013, 4, 651-655.	2.8	17
75	Tubulin acetylation promoting potency and absorption efficacy of deacetylase inhibitors. British Journal of Pharmacology, 2015, 172, 829-840.	5.4	17
76	Development of an ion-pair to improve the colon permeability of a low permeability drug: Atenolol. European Journal of Pharmaceutical Sciences, 2016, 93, 334-340.	4.0	17
77	Exploring Bioequivalence of Dexketoprofen Trometamol Drug Products with the Gastrointestinal Simulator (GIS) and Precipitation Pathways Analyses. Pharmaceutics, 2019, 11, 122.	4.5	17
78	Candesartan Cilexetil In Vitro–In Vivo Correlation: Predictive Dissolution as a Development Tool. Pharmaceutics, 2020, 12, 633.	4.5	17
79	Availability of Authorizations from EMA and FDA for Age-Appropriate Medicines Contained in the WHO Essential Medicines List for Children 2019. Pharmaceutics, 2020, 12, 316.	4.5	17
80	A topological-substructural molecular design (TOPS-MODE) approach to determining pharmacokinetics and pharmacological properties of 6-fluoroquinolone derivatives. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 56, 197-206.	4.3	16
81	In vitro–in situ permeability and dissolution of fexofenadine with kinetic modeling in the presence of sodium dodecyl sulfate. European Journal of Drug Metabolism and Pharmacokinetics, 2012, 37, 65-75.	1.6	15
82	Drug gastrointestinal absorption in rat: Strain and gender differences. European Journal of Pharmaceutical Sciences, 2015, 78, 198-203.	4.0	15
83	Computer simulations for bioequivalence trials: Selection of analyte in BCS drugs with first-pass metabolism and two metabolic pathways. European Journal of Pharmaceutical Sciences, 2010, 41, 716-728.	4.0	14
84	Effects of Ethanol on Intestinal Absorption of Drugs: In Situ Studies with Ciprofloxacin Analogs in Acute and Chronic Alcohol-Fed Rats. Alcoholism: Clinical and Experimental Research, 1999, 23, 1403-1408.	2.4	13
85	Progress in the development of early diagnosis and a drug with unique pharmacology to improve cancer therapy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 3599-3617.	3.4	13
86	Oral controlled release dosage forms: dissolution versus diffusion. Expert Opinion on Drug Delivery, 2020, 17, 791-803.	5.0	13
87	Compared effects of synthetic and natural bile acid surfactant on xenobiotic absorption. II. Studies with sodium glycocholate to confirm a hypothesis. International Journal of Pharmaceutics, 1994, 101, 209-217.	5.2	12
88	Linking the Gastrointestinal Behavior of Ibuprofen with the Systemic Exposure between and within Humansâ€"Part 2: Fed State. Molecular Pharmaceutics, 2018, 15, 5468-5478.	4.6	12
89	Biomimetic Artificial Membrane Permeability Assay over Franz Cell Apparatus Using BCS Model Drugs. Pharmaceutics, 2020, 12, 988.	4.5	12
90	IVIVC approach based on carbamazepine bioequivalence studies combination. Die Pharmazie, 2017, 72, 449-455.	0.5	12

#	Article	IF	CITATIONS
91	Exploring different strategies for imbalanced ADME data problem: case study on Caco-2 permeability modeling. Molecular Diversity, 2016, 20, 93-109.	3.9	11
92	Ion-pair approach coupled with nanoparticle formation to increase bioavailability of a low permeability charged drug. International Journal of Pharmaceutics, 2019, 557, 36-42.	5.2	11
93	Preclinical models for colonic absorption, application to controlled release formulation development. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 130, 247-259.	4.3	10
94	Investigation to Explain Bioequivalence Failure in Pravastatin Immediate-Release Products. Pharmaceutics, 2019, 11, 663.	4.5	10
95	A differential equation based modelling approach to predict supersaturation and in vivo absorption from in vitro dissolution-absorption system (idas2) data. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 165, 1-12.	4.3	9
96	Kinetic Modeling of Triamterene Intestinal Absorption and its Inhibition by Folic Acid and Methotrexate. Journal of Drug Targeting, 2003, 11, 215-223.	4.4	9
97	Dissolution Challenges Associated with the Surface pH of Drug Particles: Integration into Mechanistic Oral Absorption Modeling. AAPS Journal, 2022, 24, 17.	4.4	9
98	Absorption-partition relationships for true homologous series of xenobiotics as a possible approach to study mechanisms of surfactants in absorption. IV. Phenylacetic acid derivatives and anionic surfactants. International Journal of Pharmaceutics, 1992, 79, 135-140.	5.2	8
99	Unique pharmacology of KAR-2, a potential anti-cancer agent: Absorption modelling and selective mitotic spindle targeting. European Journal of Pharmaceutical Sciences, 2009, 36, 11-19.	4.0	8
100	Population pharmacokinetic model of lithium and drug compliance assessment. European Neuropsychopharmacology, 2016, 26, 1868-1876.	0.7	8
101	Effect of excipients on oral absorption process according to the different gastrointestinal segments. Expert Opinion on Drug Delivery, 2021, 18, 1005-1024.	5.0	8
102	Effect of Common Excipients on Intestinal Drug Absorption in Wistar Rats. Molecular Pharmaceutics, 2020, 17, 2310-2318.	4.6	8
103	Application of the Gastrointestinal Simulator (GIS) Coupled with In Silico Modeling to Measure the Impact of Coca-Cola® on the Luminal and Systemic Behavior of Loratadine (BCS Class 2b). Pharmaceutics, 2020, 12, 566.	4.5	8
104	Compared effects of synthetic and natural bile acid surfactants on xenobiotic absorption. III. studies with mixed micelles. International Journal of Pharmaceutics, 1994, 107, 159-166.	5.2	7
105	Intestinal Permeability of \hat{I}^2 -Lapachone and Its Cyclodextrin Complexes and Physical Mixtures. European Journal of Drug Metabolism and Pharmacokinetics, 2016, 41, 795-806.	1.6	7
106	In Vivo Predictive Dissolution and Simulation Workshop Report: Facilitating the Development of Oral Drug Formulation and the Prediction of Oral Bioperformance. AAPS Journal, 2018, 20, 100.	4.4	7
107	"Development of Fixed Dose Combination Products―Workshop Report: Considerations of Gastrointestinal Physiology and Overall Development Strategy. AAPS Journal, 2019, 21, 75.	4.4	7
108	In Vivo Predictive Dissolution (IPD) for Carbamazepine Formulations: Additional Evidence Regarding a Biopredictive Dissolution Medium. Pharmaceutics, 2020, 12, 558.	4.5	7

#	Article	IF	Citations
109	An In Vivo Predictive Dissolution Methodology (iPD Methodology) with a BCS Class IIb Drug Can Predict the In Vivo Bioequivalence Results: Etoricoxib Products. Pharmaceutics, 2021, 13, 507.	4.5	7
110	Global testing of a consensus solubility assessment to enhance robustness of the WHO biopharmaceutical classification system. ADMET and DMPK, 2021, 9, 23-39.	2.1	7
111	An Innovative Formulation Based on Nanostructured Lipid Carriers for Imatinib Delivery: Pre-Formulation, Cellular Uptake and Cytotoxicity Studies. Nanomaterials, 2022, 12, 250.	4.1	7
112	Semi-physiologic model validation and bioequivalence trials simulation to select the best analyte for acetylsalicylic acid. European Journal of Pharmaceutical Sciences, 2015, 74, 86-94.	4.0	6
113	Enhancing Oral Absorption of \hat{l}^2 -Lapachone: Progress Till Date. European Journal of Drug Metabolism and Pharmacokinetics, 2017, 42, 1-10.	1.6	6
114	Impact on intestinal permeability of pediatric hyperosmolar formulations after dilution: Studies with rat perfusion method. International Journal of Pharmaceutics, 2019, 557, 154-161.	5.2	6
115	Effect of thickener on disintegration, dissolution and permeability of common drug products for elderly patients. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 153, 168-176.	4.3	6
116	Two-step in vitro-in vivo correlations: Deconvolution and convolution methods, which one gives the best predictability? Comparison with one-step approach. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 185-197.	4.3	6
117	A new mathematical approach for the estimation of the AUC and its variability under different experimental designs in preclinical studies. Pharmaceutical Statistics, 2012, 11, 14-23.	1.3	5
118	Mathematical modeling of oral absorption and bioavailability of a fluoroquinolone after its precipitation in the gastrointestinal tract. Xenobiotica, 2013, 43, 745-754.	1.1	5
119	Computer simulations for bioequivalence trials: Selection of analyte in BCS class II and IV drugs with first-pass metabolism, two metabolic pathways and intestinal efflux transporter. European Journal of Pharmaceutical Sciences, 2018, 117, 193-203.	4.0	5
120	Long-Circulating Hyaluronan-Based Nanohydrogels as Carriers of Hydrophobic Drugs. Pharmaceutics, 2018, 10, 213.	4.5	4
121	Physiologically Based Pharmacokinetic (PBPK) Modeling for Predicting Brain Levels of Drug in Rat. Pharmaceutics, 2021, 13, 1402.	4.5	4
122	New In Vitro Methodology for Kinetics Distribution Prediction in the Brain. An Additional Step towards an Animal-Free Approach. Animals, 2021, 11, 3521.	2.3	4
123	pH-Dependent Molecular Gate Mesoporous Microparticles for Biological Control of Giardia intestinalis. Pharmaceutics, 2021, 13, 94.	4.5	3
124	How and Where Are Drugs Absorbed?. , 0, , 249-280.		3
125	Exploring the Predictive Power of the <i>In Situ</i> Perfusion Technique towards Drug Absorption: Theory, Practice, and Applications. Molecular Pharmaceutics, 2022, 19, 749-762.	4.6	3
126	Validation of a semi-physiological model for caffeine in healthy subjects and cirrhotic patients. European Journal of Pharmaceutical Sciences, 2015, 73, 57-63.	4.0	2

#	Article	IF	CITATIONS
127	Defining level A IVIVC dissolution specifications based on individual in vitro dissolution profiles of a controlled release formulation. European Journal of Pharmaceutical Sciences, 2018, 119, 200-207.	4.0	2
128	One and Two-Step In Vitro-In Vivo Correlations Based on USP IV Dynamic Dissolution Applied to Four Sodium Montelukast Products. Pharmaceutics, 2021, 13, 690.	4.5	2
129	Summary of the In Vivo Predictive Dissolution (iPD) - Oral Drug Delivery (ODD) Conference 2018. Dissolution Technologies, 2018, 25, 50-53.	0.6	2
130	Eremantholide C from aerial parts of Lychnophora trichocarpha, as drug candidate: fraction absorbed prediction in humans and BCS permeability class determination. DARU, Journal of Pharmaceutical Sciences, 2021, 29, 195-203.	2.0	1
131	Computer Simulations as a Tool for Optimizing Bioequivalence Trials. , 0, , .		1
132	Semi-mechanistic Pharmacokinetic/Pharmacodynamic model of three pegylated rHuEPO and ior®EPOCIM in New Zealand rabbits. European Journal of Pharmaceutical Sciences, 2018, 120, 123-132.	4.0	0
133	Report from the "3rd International Symposium on BA/BE of Oral Drug Products: Biopharmaceutics meets Galenics― Journal of Drug Delivery Science and Technology, 2020, 56, 101274.	3.0	0
134	$<\!$ strong>Towards computational prediction of Biopharmaceutics Classification System: a QSPR approach $<\!$ /strong>. , 0, , .		0
135	Integration of In Silico, In Vitro and In Situ Tools for the Preformulation and Characterization of a Novel Cardio-Neuroprotective Compound during the Early Stages of Drug Development. Pharmaceutics, 2022, 14, 182.	4.5	0