Dragos Neagu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1056849/dragos-neagu-publications-by-year.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

25	2,593	15	26
papers	citations	h-index	g-index
26	3,140 ext. citations	15.7	5.36
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
25	Stability and activity controls of Cu nanoparticles for high-performance solid oxide fuel cells. Applied Catalysis B: Environmental, 2021, 285, 119828	21.8	8
24	The effects of sulphur poisoning on the microstructure, composition and oxygen transport properties of perovskite membranes coated with nanoscale alumina layers. <i>Journal of Membrane Science</i> , 2021 , 618, 118736	9.6	3
23	Emergence and Future of Exsolved Materials. <i>Small</i> , 2021 , 17, e2006479	11	24
22	Low temperature methane conversion with perovskite-supported exo/endo-particles. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 12406-12417	13	12
21	Measuring Membrane Permeation Rates through the Optical Visualization of a Single Pore. <i>ACS Applied Materials & Discourt Applied & Discourt App</i>	9.5	О
20	Dendritic silver self-assembly in molten-carbonate membranes for efficient carbon dioxide capture. <i>Energy and Environmental Science</i> , 2020 , 13, 1766-1775	35.4	10
19	Combining Exsolution and Infiltration for Redox, Low Temperature CH4 Conversion to Syngas. <i>Catalysts</i> , 2020 , 10, 468	4	6
18	Endogenous Nanoparticles Strain Perovskite Host Lattice Providing Oxygen Capacity and Driving Oxygen Exchange and CH4 Conversion to Syngas. <i>Angewandte Chemie</i> , 2020 , 132, 2531-2540	3.6	2
17	Symmetrical Exsolution of Rh Nanoparticles in Solid Oxide Cells for Efficient Syngas Production from Greenhouse Gases. <i>ACS Catalysis</i> , 2020 , 10, 1278-1288	13.1	26
16	Endogenous Nanoparticles Strain Perovskite Host Lattice Providing Oxygen Capacity and Driving Oxygen Exchange and CH Conversion to Syngas. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 2510-2519	16.4	42
15	Exsolution of Catalytically Active Iridium Nanoparticles from Strontium Titanate. <i>ACS Applied Materials & Materia</i>	9.5	9
14	Towards efficient use of noble metals via exsolution exemplified for CO oxidation. <i>Nanoscale</i> , 2019 , 11, 16935-16944	7.7	24
13	Exsolved Nickel Nanoparticles Acting as Oxygen Storage Reservoirs and Active Sites for Redox CH4 Conversion. <i>ACS Applied Energy Materials</i> , 2019 , 2, 7288-7298	6.1	33
12	Observation of Nanoparticle Exsolution from Perovskite Oxides: From Atomic Scale Mechanistic Insight to Nanostructure Tailoring. <i>ACS Nano</i> , 2019 , 13, 12996-13005	16.7	78
11	Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticles. <i>Nature Communications</i> , 2017 , 8, 1855	17.4	87
10	Switching on electrocatalytic activity in solid oxide cells. <i>Nature</i> , 2016 , 537, 528-531	50.4	276
9	Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. <i>Nature Energy</i> , 2016 , 1,	62.3	418

LIST OF PUBLICATIONS

8	Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. <i>Nature Communications</i> , 2015 , 6, 8120	17.4	438
7	In Situ Tailored Nickel Nano-Catalyst Layer for Internal Reforming Hydrocarbon Fueled SOFCs. <i>ECS Transactions</i> , 2015 , 68, 1121-1128	1	2
6	Evidence and Model for Strain-Driven Release of Metal Nanocatalysts from Perovskites during Exsolution. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 5106-10	6.4	103
5	In situ growth of nanoparticles through control of non-stoichiometry. <i>Nature Chemistry</i> , 2013 , 5, 916-23	17.6	569
4	Calculation of a Standard Reformed Biogas Composition and Testing on SOFC Anode Powders. <i>ECS Transactions</i> , 2013 , 57, 1527-1532	1	2
3	Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants. <i>Energy and Environmental Science</i> , 2013 , 6, 256-266	35.4	197
2	Enhancing Electronic Conductivity in Strontium Titanates through Correlated A and B-Site Doping. <i>Chemistry of Materials</i> , 2011 , 23, 1607-1617	9.6	69
1	Structure and Properties of La0.4Sr0.4TiO3 Ceramics for Use as Anode Materials in Solid Oxide Fuel Cells. <i>Chemistry of Materials</i> , 2010 , 22, 5042-5053	9.6	155