
Dragos Neagu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1056849/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In situ growth of nanoparticles through control of non-stoichiometry. Nature Chemistry, 2013, 5, 916-923.	6.6	775
2	Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nature Communications, 2015, 6, 8120.	5.8	603
3	Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nature Energy, 2016, 1, .	19.8	557
4	Switching on electrocatalytic activity in solid oxide cells. Nature, 2016, 537, 528-531.	13.7	403
5	Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants. Energy and Environmental Science, 2013, 6, 256-266.	15.6	271
6	Structure and Properties of La _{0.4} Sr _{0.4} TiO ₃ Ceramics for Use as Anode Materials in Solid Oxide Fuel Cells. Chemistry of Materials, 2010, 22, 5042-5053.	3.2	179
7	<i>In Situ</i> Observation of Nanoparticle Exsolution from Perovskite Oxides: From Atomic Scale Mechanistic Insight to Nanostructure Tailoring. ACS Nano, 2019, 13, 12996-13005.	7.3	144
8	Evidence and Model for Strain-Driven Release of Metal Nanocatalysts from Perovskites during Exsolution. Journal of Physical Chemistry Letters, 2015, 6, 5106-5110.	2.1	134
9	Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticles. Nature Communications, 2017, 8, 1855.	5.8	121
10	Emergence and Future of Exsolved Materials. Small, 2021, 17, e2006479.	5.2	86
11	Enhancing Electronic Conductivity in Strontium Titanates through Correlated A and B-Site Doping. Chemistry of Materials, 2011, 23, 1607-1617.	3.2	82
12	Endogenous Nanoparticles Strain Perovskite Host Lattice Providing Oxygen Capacity and Driving Oxygen Exchange and CH ₄ Conversion to Syngas. Angewandte Chemie - International Edition, 2020, 59, 2510-2519.	7.2	70
13	Exsolved Nickel Nanoparticles Acting as Oxygen Storage Reservoirs and Active Sites for Redox CH ₄ Conversion. ACS Applied Energy Materials, 2019, 2, 7288-7298.	2.5	63
14	Symmetrical Exsolution of Rh Nanoparticles in Solid Oxide Cells for Efficient Syngas Production from Greenhouse Gases. ACS Catalysis, 2020, 10, 1278-1288.	5.5	52
15	Towards efficient use of noble metals <i>via</i> exsolution exemplified for CO oxidation. Nanoscale, 2019, 11, 16935-16944.	2.8	40
16	Stability and activity controls of Cu nanoparticles for high-performance solid oxide fuel cells. Applied Catalysis B: Environmental, 2021, 285, 119828.	10.8	27
17	Exsolution of Catalytically Active Iridium Nanoparticles from Strontium Titanate. ACS Applied Materials & Interfaces, 2020, 12, 37444-37453.	4.0	24
18	Low temperature methane conversion with perovskite-supported <i>exo</i> / <i>endo</i> -particles. Journal of Materials Chemistry A, 2020, 8, 12406-12417.	5.2	22

DRAGOS NEAGU

#	Article	IF	CITATIONS
19	Dendritic silver self-assembly in molten-carbonate membranes for efficient carbon dioxide capture. Energy and Environmental Science, 2020, 13, 1766-1775.	15.6	15
20	Combining Exsolution and Infiltration for Redox, Low Temperature CH4 Conversion to Syngas. Catalysts, 2020, 10, 468.	1.6	12
21	The effects of sulphur poisoning on the microstructure, composition and oxygen transport properties of perovskite membranes coated with nanoscale alumina layers. Journal of Membrane Science, 2021, 618, 118736.	4.1	10
22	Endogenous Nanoparticles Strain Perovskite Host Lattice Providing Oxygen Capacity and Driving Oxygen Exchange and CH 4 Conversion to Syngas. Angewandte Chemie, 2020, 132, 2531-2540.	1.6	9
23	In Situ Tailored Nickel Nano-Catalyst Layer for Internal Reforming Hydrocarbon Fueled SOFCs. ECS Transactions, 2015, 68, 1121-1128.	0.3	3
24	Calculation of a Standard Reformed Biogas Composition and Testing on SOFC Anode Powders. ECS Transactions, 2013, 57, 1527-1532.	0.3	2
25	Galvanic Restructuring of Exsolved Nanoparticles for Plasmonic and Electrocatalytic Energy Conversion. Small, 2022, 18, .	5.2	2
26	Measuring Membrane Permeation Rates through the Optical Visualization of a Single Pore. ACS Applied Materials & Interfaces, 2020, 12, 16436-16441.	4.0	1