Shan Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10566409/publications.pdf

Version: 2024-02-01

840776 940533 16 769 11 16 citations h-index g-index papers 16 16 16 1270 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Understanding the nanostructure evolution and the mechanical strengthening of the M50 bearing steel during ultrasonic shot peening. Materials Science & Decimicals Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 836, 142721.	5.6	52
2	Enhanced Wear Resistance of the Ultrastrong Ultrasonic Shot-Peened M50 Bearing Steel with Gradient Nanograins. Metals, 2022, 12, 424.	2.3	13
3	Ultrastrong medium entropy alloy with simultaneous strength-ductility improvement via heterogeneous nanocrystalline structures. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141631.	5.6	16
4	Elastic Modulus, Hardness, and Fracture Toughness of Li _{6.4} La ₃ Zr _{1.4} Ta _{0.6} O ₁₂ Solid Electrolyte. Chinese Physics Letters, 2021, 38, 098401.	3.3	7
5	Strain rate sensitivity of the ultrastrong gradient nanocrystalline 316L stainless steel and its rate-dependent modeling at nanoscale. International Journal of Plasticity, 2020, 129, 102696.	8.8	46
6	Enhanced Mechanical and Biological Performance of an Extremely Fine Nanograined 316L Stainless Steel Cell–Substrate Interface Fabricated by Ultrasonic Shot Peening. ACS Biomaterials Science and Engineering, 2018, 4, 1609-1621.	5.2	12
7	Ultrastrong nanocrystalline stainless steel and its Hall-Petch relationship in the nanoscale. Scripta Materialia, 2018, 155, 26-31.	5.2	72
8	Overview of ultrasonic shot peening. Surface Engineering, 2017, 33, 651-666.	2.2	44
9	In-situ method to produce nanograined metallic powders/flakes via ultrasonic shot peening. Journal of Manufacturing Processes, 2017, 26, 393-398.	5.9	6
10	Enhanced human osteoblast cell functions by "net-like―nanostructured cell-substrate interface in orthopedic applications. Materials Letters, 2017, 189, 275-278.	2.6	11
11	Mesoporous Carbon Nanofibers Embedded with MoS ₂ Nanocrystals for Extraordinary Liâ€lon Storage. Chemistry - A European Journal, 2015, 21, 18248-18257.	3.3	25
12	Surface Nanocrystallization and Numerical Modeling of Low Carbon Steel by Means of Ultrasonic Shot Peening. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 1253-1261.	2.2	28
13	Facile and Green Preparation for the Formation of MoO ₂ -GO Composites as Anode Material for Lithium-lon Batteries. Journal of Physical Chemistry C, 2014, 118, 24890-24897.	3.1	58
14	Preparation of carbon coated MoS2 flower-like nanostructure with self-assembled nanosheets as high-performance lithium-ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 7862.	10.3	226
15	CoO–carbon nanofiber networks prepared by electrospinning as binder-free anode materials for lithium-ion batteries with enhanced properties. Nanoscale, 2013, 5, 12342.	5.6	149
16	Growth of molybdate nanorods through an intermediate sustained release process. CrystEngComm, 2011, 13, 1755.	2.6	4