JesÃ^os Acero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1056608/publications.pdf

Version: 2024-02-01

136950 149698 3,657 140 32 56 citations h-index g-index papers 140 140 140 1298 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Induction Heating of Two Magnetically Independent Loads With a Single Transmitter. IEEE Transactions on Power Electronics, 2022, 37, 3391-3402.	7.9	2
2	Induction Heating Cookers: A Path Towards Decarbonization Using Energy Saving Cookers., 2022,,.		1
3	EMI Reduction Via Resonator Coils in Glassless Integrated Domestic Induction Systems. IEEE Access, 2021, 9, 128147-128156.	4.2	2
4	Large-Signal Electrical Parameter Characterization in Inductive Power Transfer Systems. , 2021, , .		1
5	Analytical Formulation of Copper Loss of Litz Wire With Multiple Levels of Twisting Using Measurable Parameters. IEEE Transactions on Industry Applications, 2021, 57, 2407-2420.	4.9	15
6	Double Inverter with Common Resonant Capacitor for Elliptical Coil Induction Heating Devic. , 2021, , .		0
7	Domestic induction heating system with standard primary inductor for reduced-size and high distance cookware. , 2021, , .		1
8	Induction Heating Adaptation of a Different-Sized Load With Matching Secondary Inductor to Achieve Uniform Heating and Enhance Vertical Displacement. IEEE Transactions on Power Electronics, 2021, 36, 6929-6942.	7.9	21
9	A Graduate Magnetic Design Course in a Power Electronics-Oriented Curriculum. IEEE Transactions on Education, 2021, 64, 223-232.	2.4	1
10	First selfâ€resonant frequency of power inductors based on approximated corrected stray capacitances. IET Power Electronics, 2021, 14, 257-267.	2.1	6
11	Experimental characterization of materials with controlled Curie temperature for domestic induction heating applications. , $2021, \ldots$		5
12	Magnetizable Concrete Flux Concentrators for Wireless Inductive Power Transfer Applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 2696-2706.	5.4	14
13	Analysis and Modeling of the Forces Exerted on the Cookware in Induction Heating Applications. IEEE Access, 2020, 8, 131178-131187.	4.2	13
14	Analysis of Winding Loss and optimization of Inductive Power Transfer Coils. , 2020, , .		1
15	An Inductive Power Transfer System Case Study: Large Gap in Low Power Wireless Power Supply. , 2020, , .		3
16	A recursive methodology for modelling multi-stranded wires with multilevel helix structure. Applied Mathematical Modelling, 2020, 83, 76-89.	4.2	10
17	Design methodology of high performance domestic induction heating systems under worktop. IET Power Electronics, 2020, 13, 300-306.	2.1	10
18	Adapting of Non-Metallic Cookware for Induction Heating Technology via Thin-Layer Non-Magnetic Conductive Coatings. IEEE Access, 2020, 8, 11219-11227.	4.2	15

#	Article	IF	CITATIONS
19	An analysis of electromagnetic forces on cooking vessels used in domestic induction heating appliances oriented to identify the properties of materials. , 2019, , .		3
20	Simple Fully Analytical Copper Loss Model of Litz Wire Made of Strands Twisted in Multiple Levels. , 2019, , .		8
21	Design of a Three Inductor System with One Externally Fed for an Inductively Coupled Heating Application. , 2019, , .		4
22	Nonplanar Overlapped Inductors Applied to Domestic Induction Heating Appliances. IEEE Transactions on Industrial Electronics, 2019, 66, 6916-6924.	7.9	9
23	A Flexible Cooking Zone Composed of Partially Overlapped Inductors. IEEE Transactions on Industrial Electronics, 2018, 65, 7762-7771.	7.9	25
24	Inductor System Evaluation for Simultaneous Wireless Energy Transfer and Induction Heating. , 2018, , .		5
25	3D Finite Element Simulation of Litz Wires with Multilevel Bundle Structure., 2018,,.		12
26	Magnetic Circuit Design for Power Electronics. , 2018, , 571-589.		4
27	High power density PCB coil array applied to domestic induction heating appliances. , 2018, , .		3
28	Analysis and design of tubular coils for wireless inductive power transfer systems. , 2017, , .		11
29	Modeling of domestic induction heating systems with non-linear saturable loads. , 2017, , .		12
30	Equivalence among strands in PCB litz-wire inductors applied to domestic induction heating. International Journal of Applied Electromagnetics and Mechanics, 2017, 53, S129-S137.	0.6	4
31	Design and Optimization of Small Inductors on Extra-Thin PCB for Flexible Cooking Surfaces. IEEE Transactions on Industry Applications, 2017, 53, 371-379.	4.9	15
32	Mathematical description of PCB-adapted litz wire geometry for automated layout generation of WPT coils. , 2017, , .		3
33	Power losses in flux concentrators of inductor systems for induction cooktops. , 2017, , .		0
34	Design and Implementation of a Test-Bench for Efficiency Measurement of Domestic Induction Heating Appliances. Energies, 2016, 9, 636.	3.1	3
35	Design of efficient loads for domestic induction heating applications by means of non-magnetic thin metallic layers. , 2016 , , .		2
36	Assymmetric duty-cycle phase-shift modulation for power management in double half-bridge inverter with partly coupled inductive loads. , 2016 , , .		0

#	Article	IF	CITATIONS
37	Analytical solution of the induced currents in multilayer cylindrical conductors under external electromagnetic sources. Applied Mathematical Modelling, 2016, 40, 10667-10678.	4.2	11
38	Calculation of losses in PCB windings for multi-coil contactless charging systems. , 2016, , .		0
39	Interference Emission Estimation of Domestic Induction Cookers Based on Finite-Element Simulation. IEEE Transactions on Electromagnetic Compatibility, 2016, 58, 993-999.	2.2	9
40	Normal-Mode Decomposition of Surface Power Distribution in Multiple-Coil Induction Heating Systems. IEEE Transactions on Magnetics, 2016, 52, 1-8.	2.1	12
41	Analysis and Optimization of the Efficiency of Induction Heating Applications With Litz-Wire Planar and Solenoidal Coils. IEEE Transactions on Power Electronics, 2016, 31, 5089-5101.	7.9	81
42	Design and Implementation of PCB Inductors With Litz-Wire Structure for Conventional-Size Large-Signal Domestic Induction Heating Applications. IEEE Transactions on Industry Applications, 2015, 51, 2434-2442.	4.9	33
43	Optimized 4-coil inductor system arrangement for induction heating appliances. , 2015, , .		3
44	Minimization of vias in PCB implementations of planar coils with litz-wire structure., 2015,,.		8
45	Performance Evaluation of Graphite Thin Slabs for Induction Heating Domestic Applications. IEEE Transactions on Industry Applications, 2015, 51, 2398-2404.	4.9	8
46	Phaseâ€shift modulation in double halfâ€bridge inverter with common resonant capacitor for induction heating appliances. IET Power Electronics, 2015, 8, 1128-1136.	2.1	23
47	Design and optimization of small inductors on extra-thin PCB for flexible cooking surfaces. , 2015, , .		2
48	Frequency-Dependent Resistance of Planar Coils in Printed Circuit Board With Litz Structure. IEEE Transactions on Magnetics, 2014, 50, 1-9.	2.1	45
49	AC Power Losses Model for Planar Windings With Rectangular Cross-Sectional Conductors. IEEE Transactions on Power Electronics, 2014, 29, 23-28.	7.9	61
50	Performance evaluation of graphite thin slabs for induction heating domestic applications. , 2014, , .		0
51	Loss analysis of multistranded twisted wires by using 3D-FEA simulation. , 2014, , .		7
52	FEA-Based Model of Elliptic Coils of Rectangular Cross Section. IEEE Transactions on Magnetics, 2014, 50, 1-7.	2.1	11
53	Design and implementation of PCB inductors with litz-wire structure for conventional-size large-signal domestic induction heating applications. , 2014, , .		20
54	Printed circuit board implementation of small inductors for domestic induction heating applications using a planar litz wire structure., 2013 ,,.		11

#	Article	IF	Citations
55	Induction Heating Appliances: Toward More Flexible Cooking Surfaces. IEEE Industrial Electronics Magazine, 2013, 7, 35-47.	2.6	133
56	Synthesized voice videos for reusable learning objects. , 2013, , .		0
57	Quantitative Evaluation of Induction Efficiency in Domestic Induction Heating Applications. IEEE Transactions on Magnetics, 2013, 49, 1382-1389.	2.1	73
58	Analysis of the Mutual Inductance of Planar-Lumped Inductive Power Transfer Systems. IEEE Transactions on Industrial Electronics, 2013, 60, 410-420.	7.9	128
59	Computational Modeling of Two Partly Coupled Coils Supplied by a Double Half-Bridge Resonant Inverter for Induction Heating Appliances. IEEE Transactions on Industrial Electronics, 2013, 60, 3092-3105.	7.9	76
60	Elliptic flat-type inductor for low-cost flexible active surface implementations of domestic induction heating appliances. , $2013, \ldots$		2
61	Mutual Impedance of Small Ring-Type Coils for Multiwinding Induction Heating Appliances. IEEE Transactions on Power Electronics, 2013, 28, 1025-1035.	7.9	44
62	Upgrading of double seriesâ€resonant halfâ€bridge inverter to improve efficiency. Electronics Letters, 2013, 49, 1091-1092.	1.0	2
63	A dynamic equivalent network model of the skin effect. , 2013, , .		6
64	Efficiency improvement of domestic induction appliances using variable inductor-load distance. , 2012, , .		3
65	Multiple-Output Resonant Matrix Converter for Multiple Induction Heaters. IEEE Transactions on Industry Applications, 2012, 48, 1387-1396.	4.9	66
66	PCB multi-track coils for domestic induction heating applications. , 2012, , .		2
67	Educational opportunities based on the university-industry synergies in an open innovation framework. European Journal of Engineering Education, 2012, 37, 15-28.	2.3	23
68	Frequency-dependent modelling of domestic induction heating systems using numerical methods for accurate time-domain simulation. IET Power Electronics, 2012, 5, 1291.	2.1	32
69	First harmonic equivalent impedance of coupled inductive loads for induction heating applications. , 2012, , .		5
70	Practical issues when calculating AC losses for magnetic devices in PCB implementations. , 2012, , .		11
71	TM-TE DECOMPOSITION OF POWER LOSSES IN MULTI-STRANDED LITZ-WIRES USED IN ELECTRONIC DEVICES. Progress in Electromagnetics Research, 2012, 123, 83-103.	4.4	45
72	Inductive Sensor for Temperature Measurement in Induction Heating Applications. IEEE Sensors Journal, 2012, 12, 996-1003.	4.7	32

#	Article	IF	CITATIONS
73	An application example to gain an insight into the electromagnetic quasistatic approach concept for graduate students. , $2011, \ldots$		О
74	Bridging the gap between research and teaching: An application example in power electronics education. , $2011, , .$		3
75	Analysis of the coupling between small ring-type coils used in adaptable-size burners for domestic induction heating hobs. , $2011,\ldots$		1
76	FEA tool based model of partly coupled coils used in domestic induction cookers. , 2011, , .		7
77	Passive network equivalent of an induction system for domestic cookers applications based on FEA tool simulation. , $2011, \ldots$		3
78	Multiple-output resonant matrix converter for multiple-inductive-load systems. , 2011, , .		12
79	Analysis and Modeling of Planar Concentric Windings Forming Adaptable-Diameter Burners for Induction Heating Appliances. IEEE Transactions on Power Electronics, 2011, 26, 1546-1558.	7.9	59
80	High Frequency Pulse Density Modulation for cost-effective and efficient multiple induction-heater architectures. , $2011, \ldots$		2
81	Phase-shift control of dual half-bridge inverter feeding coupled loads for induction heating purposes. Electronics Letters, 2011, 47, 670.	1.0	34
82	Series Resonant Multiinverter with Discontinuous-Mode Control for Improved Light-Load Operation. IEEE Transactions on Industrial Electronics, 2011, 58, 5163-5171.	7.9	78
83	COUPLING IMPEDANCE BETWEEN PLANAR COILS INSIDE A LAYERED MEDIA. Progress in Electromagnetics Research, 2011, 112, 381-396.	4.4	16
84	Series resonant inverter with selective harmonic operation applied to all-metal domestic induction heating. IET Power Electronics, 2011, 4, 587.	2.1	58
85	Educational activities and results obtained from a University-Industry collaborative framework experience. , $2011, , .$		1
86	Pulse delay control strategy for improved power control and efficiency in multiple resonant load systems. , 2011 , , .		4
87	An application of the impedance boundary condition for the design of coils used in domestic induction heating systems. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2011, 30, 1616-1625.	0.9	4
88	Efficiency-Oriented Design of ZVS Half-Bridge Series Resonant Inverter With Variable Frequency Duty Cycle Control. IEEE Transactions on Power Electronics, 2010, 25, 1671-1674.	7.9	158
89	Domestic Induction Appliances. IEEE Industry Applications Magazine, 2010, 16, 39-47.	0.4	164
90	Series resonant multi-inverter with discontinuous-mode control for improved light-load operation. , 2010, , .		11

#	Article	IF	Citations
91	Resonant inverter topologies for three concentric planar windings applied to domestic induction heating. Electronics Letters, 2010, 46, 1225.	1.0	33
92	Modeling of adaptable-diameter burners formed by concentric planar windings for domestic induction heating applications. , $2010, \dots$		1
93	Experimental setup for inductive efficiency measurements of domestic induction systems based on energy balance., 2010, , .		6
94	Multiple-output resonant inverter topology for multi-inductor loads. , 2010, , .		12
95	Identification of the material properties used in domestic induction heating appliances for system-level simulation and design purposes. , $2010, \ldots$		12
96	Series-Resonant Multiinverter for Multiple Induction Heaters. IEEE Transactions on Power Electronics, 2010, 25, 2860-2868.	7.9	115
97	Educational reconfigurable platform for courses on power electronics. , 2010, , .		5
98	Comparator-less digital implementation of AC-coupled A/D converters. Electronics Letters, 2009, 45, 537.	1.0	5
99	Embedded Ring-Type Inductors Modeling With Application to Induction Heating Systems. IEEE Transactions on Magnetics, 2009, 45, 5333-5343.	2.1	20
100	Load-Adaptive Control Algorithm of Half-Bridge Series Resonant Inverter for Domestic Induction Heating. IEEE Transactions on Industrial Electronics, 2009, 56, 3106-3116.	7.9	200
101	Power Measurement by Output-Current Integration in Series Resonant Inverters. IEEE Transactions on Industrial Electronics, 2009, 56, 559-567.	7.9	33
102	Versatile High-Frequency Inverter Module for Large-Signal Inductive Loads Characterization Up to 1.5 MHz and 7 kW. IEEE Transactions on Power Electronics, 2008, 23, 75-87.	7.9	28
103	Efficiency model of planar loaded twisted-wire windings in a magnetic substrate for domestic induction heating appliances. Power Electronics Specialist Conference (PESC), IEEE, 2008, , .	0.0	3
104	Modeling Mutual Impedances of Loaded Non-Coaxial Inductors for Induction Heating Applications. IEEE Transactions on Magnetics, 2008, 44, 4115-4118.	2.1	14
105	The domestic induction heating appliance: An overview of recent research. IEEE Applied Power Electronics Conference and Exposition, 2008, , .	0.0	54
106	FPGA Implementation of a Switching Frequency Modulation Circuit for EMI Reduction in Resonant Inverters for Induction Heating Appliances. IEEE Transactions on Industrial Electronics, 2008, 55, 11-20.	7.9	94
107	A new dynamic electrical model of domestic induction heating loads. IEEE Applied Power Electronics Conference and Exposition, 2008, , .	0.0	18
108	Word length selection method based on mixed simulation for digital PID controllers implemented in FPGA. , 2008, , .		1

#	Article	IF	Citations
109	Electromagnetic induction of planar windings with cylindrical symmetry between two half-spaces. Journal of Applied Physics, 2008, 103, .	2.5	22
110	FPGA-Based Power Measuring for Induction Heating Appliances Using Sigma–Delta A/D Conversion. IEEE Transactions on Industrial Electronics, 2007, 54, 1843-1852.	7.9	57
111	Temperature Influence on Equivalent Impedance and Efficiency of Inductor Systems for Domestic Induction Heating Appliances. IEEE Applied Power Electronics Conference and Exposition, 2007, , .	0.0	26
112	Controlled-resistance loads for induction heating applications using thin non-magnetic metallic layers. Electronics Letters, 2007, 43, 461.	1.0	1
113	Methods and procedures for accurate induction heating load measurement and characterization. , 2007, , .		11
114	Comparing simulation alternatives of FPGA-based controllers for switching converters., 2007,,.		10
115	Using Mixed-Signal Simulation to Design a Digital Power Measurement System for Induction Heating Home Appliances. , 2007, , .		6
116	Modeling and Calculation of the Efficiency for Low-cost Round-wire Planar Windings in Domestic Induction Heating Applications. , 2007, , .		3
117	Resonant Inverter Topology for All-Metal Domestic Induction Heating. , 2007, , .		12
118	A model of losses in twisted-multistranded wires for planar windings used in domestic induction heating appliances. IEEE Applied Power Electronics Conference and Exposition, 2007, , .	0.0	16
119	A model of the equivalent impedance of the coupled winding-load system for a domestic induction heating application. , 2007, , .		11
120	Improved Performance of Half-Bridge Series Resonant Inverter for Induction Heating with Discontinuous Mode Control. IEEE Applied Power Electronics Conference and Exposition, 2007, , .	0.0	22
121	Dual 1.5-MHz 3.5-kW versatile half-bridge series-resonant inverter module for inductive load characterization. IEEE Applied Power Electronics Conference and Exposition, 2007, , .	0.0	7
122	High frequency inverter design for large-signal characterization of domestic induction heating load. Industrial Electronics Society (IECON), Annual Conference of IEEE, 2006, , .	0.0	1
123	Frequency-dependent resistance in Litz-wire planar windings for domestic induction heating appliances. IEEE Transactions on Power Electronics, 2006, 21, 856-866.	7.9	144
124	Analytical equivalent impedance for a planar circular induction heating system. IEEE Transactions on Magnetics, 2006, 42, 84-86.	2.1	81
125	Enhancement of induction heating performance by sandwiched planar windings. Electronics Letters, 2006, 42, 241.	1.0	20
126	An FPGA-Based Digital Modulator for Full- or Half-Bridge Inverter Control. IEEE Transactions on Power Electronics, 2006, 21, 1479-1483.	7.9	45

#	ARTICLE	IF	CITATION
127	Magnetic vector potential based model for eddy-current loss calculation in round-wire planar windings. IEEE Transactions on Magnetics, 2006, 42, 2152-2158.	2.1	31
128	Modeling of Planar Spiral Inductors Between Two Multilayer Media for Induction Heating Applications. IEEE Transactions on Magnetics, 2006, 42, 3719-3729.	2.1	70
129	Simple resistance calculation in litz-wire planar windings for induction cooking appliances. IEEE Transactions on Magnetics, 2005, 41, 1280-1288.	2.1	80
130	Efficiency Optimization in ZVS Series Resonant Inverters With Asymmetrical Voltage-Cancellation Control. IEEE Transactions on Power Electronics, 2005, 20, 1036-1044.	7.9	52
131	Asymmetrical Voltage-Cancellation Control for Full-Bridge Series Resonant Inverters. IEEE Transactions on Power Electronics, 2004, 19, 461-469.	7.9	197
132	Comparative study and simulation of optimal converter topologies for SMES systems. IEEE Transactions on Applied Superconductivity, 1995, 5, 254-257.	1.7	35
133	Current limiter based on melt processed YBCO bulk superconductors. IEEE Transactions on Applied Superconductivity, 1995, 5, 1071-1074.	1.7	24
134	A VHDL electrothermal modeling of power electronic circuits. , 0, , .		2
135	Power measuring in two-output resonant inverters for induction cooking appliances. , 0, , .		9
136	A comparative study of resonant inverter topologies used in induction cookers. , 0, , .		82
137	EMI improvements using the switching frequency modulation in a resonant inverter for domestic induction heating appliances. , 0, , .		14
138	Frequency-dependent resistance in Litz-wire planar windings for all-metal domestic induction heating appliances. , 0 , , .		9
139	An electromagnetic-based model for calculating the efficiency in domestic induction heating appliances. , 0 , , .		11
140	Loss Analysis and Optimization of Round-wire Planar Windings for Domestic Induction Heating Appliances. , 0, , .		5