
Kaori Nozawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10565292/publications.pdf Version: 2024-02-01

KAORI NOZAWA

#	Article	IF	CITATIONS
1	Sperm calcineurin inhibition prevents mouse fertility with implications for male contraceptive. Science, 2015, 350, 442-445.	6.0	137
2	Sperm-borne phospholipase C zeta-1 ensures monospermic fertilization in mice. Scientific Reports, 2018, 8, 1315.	1.6	92
3	CRISPR/Cas9 mediated genome editing in ES cells and its application for chimeric analysis in mice. Scientific Reports, 2016, 6, 31666.	1.6	85
4	Feasibility for a large scale mouse mutagenesis by injecting CRISPR/Cas plasmid into zygotes. Development Growth and Differentiation, 2014, 56, 122-129.	0.6	75
5	Radial spoke head 6 homolog a is required for sperm flagellum formation and male fertility in mice. Journal of Cell Science, 2018, 131, .	1.2	75
6	CRISPR/Cas9-Mediated Rapid Generation of Multiple Mouse Lines Identified Ccdc63 as Essential for Spermiogenesis. International Journal of Molecular Sciences, 2015, 16, 24732-24750.	1.8	51
7	Sperm Postacrosomal WW Domain-Binding Protein Is Not Required for Mouse Egg Activation1. Biology of Reproduction, 2015, 93, 94.	1.2	51
8	Calreticulin is required for development of the cumulus oocyte complex and female fertility. Scientific Reports, 2015, 5, 14254.	1.6	41
9	Large-scale discovery of male reproductive tract-specific genes through analysis of RNA-seq datasets. BMC Biology, 2020, 18, 103.	1.7	39
10	Endometrial receptivity and implantation require uterine BMP signaling through an ACVR2A-SMAD1/SMAD5 axis. Nature Communications, 2021, 12, 3386.	5.8	38
11	Nexin-Dynein regulatory complex component DRC7 but not FBXL13 is required for sperm flagellum formation and male fertility in mice. PLoS Genetics, 2020, 16, e1008585.	1.5	28
12	The testis-specific serine proteases PRSS44, PRSS46, and PRSS54 are dispensable for male mouse fertilityâ€. Biology of Reproduction, 2020, 102, 84-91.	1.2	27
13	CRISPR/Cas9-based genome editing in mice uncovers 13 testis- or epididymis-enriched genes individually dispensable for male reproductionâ€. Biology of Reproduction, 2020, 103, 183-194.	1.2	21
14	Cfap97d1Âis important for flagellar axoneme maintenance and male mouse fertility. PLoS Genetics, 2020, 16, e1008954.	1.5	15
15	Neonatal exposure to 17α-ethynyl estradiol affects ovarian gene expression and disrupts reproductive cycles in female rats. Reproductive Toxicology, 2014, 46, 77-84.	1.3	14
16	Knockout of mouse receptor accessory protein 6 leads to sperm function and morphology defectsâ€. Biology of Reproduction, 2020, 102, 1234-1247.	1.2	12
17	Knockout of serine-rich single-pass membrane protein 1 (Ssmem1) causes globozoospermia and sterility in male miceâ€. Biology of Reproduction, 2020, 103, 244-253.	1.2	11
18	Neonatal Exposure to 17α-Ethinyl Estradiol Affects Kisspeptin Expression and LH-Surge Level in Female Rats. Journal of Veterinary Medical Science, 2014, 76, 1105-1110.	0.3	10

Kaori Nozawa

#	Article	IF	CITATIONS
19	Viable offspring after imaging of Ca2+ oscillations and visualization of the cortical reaction in mouse eggsâ€. Biology of Reproduction, 2017, 96, 563-575.	1.2	10
20	The testis-specific E3 ubiquitin ligase RNF133 is required for fecundity in mice. BMC Biology, 2022, 20, .	1.7	9
21	Knockout of family with sequence similarity 170 member A (Fam170a) causes male subfertility, while Fam170b is dispensable in miceâ€. Biology of Reproduction, 2020, 103, 205-222.	1.2	8
22	Estrogenic Compounds Impair Primordial Follicle Formation by Inhibiting the Expression of Proapoptotic Hrk in Neonatal Rat Ovary. Biology of Reproduction, 2016, 95, 78-78.	1.2	7