Michael Way

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1056470/publications.pdf Version: 2024-02-01

161 papers	11,381 citations	19636 61 h-index	30894 102 g-index
171	171	171	11344
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Actin-based motility of vaccinia virus. Nature, 1995, 378, 636-638.	13.7	416
2	Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature, 1999, 401, 926-929.	13.7	394
3	Activation of MDA5 Requires Higher-Order RNA Structures Generated during Virus Infection. Journal of Virology, 2009, 83, 10761-10769.	1.5	377
4	A Superhighway to Virus Infection. Cell, 2006, 124, 741-754.	13.5	351
5	F-Actin Is an Evolutionarily Conserved Damage-Associated Molecular Pattern Recognized by DNGR-1, a Receptor for Dead Cells. Immunity, 2012, 36, 635-645.	6.6	339
6	A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nature Cell Biology, 2000, 2, 441-448.	4.6	321
7	Caveolin-3 Associates with Developing T-tubules during Muscle Differentiation. Journal of Cell Biology, 1997, 136, 137-154.	2.3	317
8	Lamellipodin, an Ena/VASP Ligand, Is Implicated in the Regulation of Lamellipodial Dynamics. Developmental Cell, 2004, 7, 571-583.	3.1	301
9	Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nature Cell Biology, 2001, 3, 992-1000.	4.6	270
10	Surfing pathogens and the lessons learned for actin polymerization. Trends in Cell Biology, 2001, 11, 30-38.	3.6	192
11	Coupling viruses to dynein and kinesin-1. EMBO Journal, 2011, 30, 3527-3539.	3.5	188
12	Arp2/3-Mediated Actin-Based Motility: A Tail of Pathogen Abuse. Cell Host and Microbe, 2013, 14, 242-255.	5.1	188
13	M-caveolin, a muscle-specific caveolin-related protein. FEBS Letters, 1995, 376, 108-112.	1.3	187
14	Kinesin-1-Mediated Capsid Disassembly and Disruption of the Nuclear Pore Complex Promote Virus Infection. Cell Host and Microbe, 2011, 10, 210-223.	5.1	174
15	Isoform diversity in the Arp2/3 complex determines actin filament dynamics. Nature Cell Biology, 2016, 18, 76-86.	4.6	174
16	Regulated Exocytosis in Neuroendocrine Cells: A Role for Subplasmalemmal Cdc42/N-WASP-induced Actin Filaments. Molecular Biology of the Cell, 2004, 15, 520-531.	0.9	173
17	Imaging macrophage chemotaxis in vivo: Studies of microtubule function in zebrafish wound inflammation. Cytoskeleton, 2006, 63, 415-422.	4.4	171
18	SLP-76 Coordinates Nck-Dependent Wiskott-Aldrich Syndrome Protein Recruitment with Vav-1/Cdc42-Dependent Wiskott-Aldrich Syndrome Protein Activation at the T Cell-APC Contact Site. Journal of Immunology, 2003, 171, 1360-1368.	0.4	158

#	Article	IF	CITATIONS
19	Determination of the alpha-actinin-binding site on actin filaments by cryoelectron microscopy and image analysis Journal of Cell Biology, 1994, 126, 433-443.	2.3	156
20	Vaccinia virus infection disrupts microtubule organization and centrosome function. EMBO Journal, 2000, 19, 3932-3944.	3.5	151
21	Src Mediates a Switch from Microtubule- to Actin-Based Motility of Vaccinia Virus. Science, 2004, 306, 124-129.	6.0	150
22	Evidence for functional homology in the F-actin binding domains of gelsolin and alpha-actinin: implications for the requirements of severing and capping Journal of Cell Biology, 1992, 119, 835-842.	2.3	149
23	Regulation of Protein Transport from the Golgi Complex to the Endoplasmic Reticulum by CDC42 and N-WASP. Molecular Biology of the Cell, 2002, 13, 866-879.	0.9	144
24	Viral manipulations of the actin cytoskeleton. Trends in Microbiology, 1997, 5, 142-148.	3.5	142
25	Expression of the N-terminal domain of dystrophin inE. coliand demonstration of binding to F-actin. FEBS Letters, 1992, 301, 243-245.	1.3	141
26	Open source software for quantification of cell migration, protrusions, and fluorescence intensities. Journal of Cell Biology, 2015, 209, 163-180.	2.3	138
27	Nucleotide sequence of pig plasma gelsolin. Journal of Molecular Biology, 1988, 203, 1127-1133.	2.0	136
28	Grb2 and Nck Act Cooperatively to Promote Actin-Based Motility of Vaccinia Virus. Current Biology, 2002, 12, 740-745.	1.8	135
29	Phosphatidylinositol 4,5-Biphosphate (PIP2)-induced Vesicle Movement Depends on N-WASP and Involves Nck, WIP, and Grb2. Journal of Biological Chemistry, 2002, 277, 37771-37776.	1.6	133
30	Viral transport and the cytoskeleton. Current Opinion in Cell Biology, 2001, 13, 97-105.	2.6	131
31	A Phosphatidylinositol 3-Kinase-independent Insulin Signaling Pathway to N-WASP/Arp2/3/F-actin Required for GLUT4 Glucose Transporter Recycling. Journal of Biological Chemistry, 2002, 277, 509-515.	1.6	130
32	The rate of N-WASP exchange limits the extent of ARP2/3-complex-dependent actin-based motility. Nature, 2009, 458, 87-91.	13.7	128
33	M-caveolin, a muscle-specific caveolin-related protein. FEBS Letters, 1996, 378, 108-112.	1.3	126
34	Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner. Genes and Development, 2013, 27, 654-669.	2.7	121
35	Interactions between Vaccinia Virus IEV Membrane Proteins and Their Roles in IEV Assembly and Actin Tail Formation. Journal of Virology, 1999, 73, 2863-2875.	1.5	118
36	Molecular Characterization of Caveolin Association with the Golgi Complex: Identification of a Cis-Golgi Targeting Domain in the Caveolin Molecule. Journal of Cell Biology, 1999, 145, 1443-1459.	2.3	113

#	Article	IF	CITATIONS
37	Vaccinia Virus-Induced Cell Motility Requires F11L-Mediated Inhibition of RhoA Signaling. Science, 2006, 311, 377-381.	6.0	107
38	Tyrosine phosphorylation is required for actin-based motility of vaccinia but not Listeria or Shigella. Current Biology, 1999, 9, 89-S2.	1.8	105
39	Ena/VASP Proteins Cooperate with the WAVE Complex to Regulate the Actin Cytoskeleton. Developmental Cell, 2014, 30, 569-584.	3.1	101
40	A dynamic podosome-like structure of epithelial cells. Experimental Cell Research, 2004, 295, 360-374.	1.2	100
41	Myofibril contraction and crosslinking drive nuclear movement to the periphery of skeletal muscle. Nature Cell Biology, 2017, 19, 1189-1201.	4.6	100
42	A role for VASP in RhoA-Diaphanous signalling to actin dynamics and SRF activity. EMBO Journal, 2003, 22, 3050-3061.	3.5	96
43	Transport of African Swine Fever Virus from Assembly Sites to the Plasma Membrane Is Dependent on Microtubules and Conventional Kinesin. Journal of Virology, 2004, 78, 7990-8001.	1.5	93
44	Mitochondria mediate septin cage assembly to promote autophagy of <i>Shigella</i> . EMBO Reports, 2016, 17, 1029-1043.	2.0	91
45	Abl collaborates with Src family kinases to stimulate actin-based motility of vaccinia virus. Cellular Microbiology, 2006, 8, 233-241.	1.1	90
46	Signaling During Pathogen Infection. Science Signaling, 2006, 2006, re5-re5.	1.6	87
47	APC/C Dysfunction Limits Excessive Cancer Chromosomal Instability. Cancer Discovery, 2017, 7, 218-233.	7.7	87
48	A kinesin-1 binding motif in vaccinia virus that is widespread throughout the human genome. EMBO Journal, 2011, 30, 4523-4538.	3.5	86
49	Analysis of the mechanisms of Salmonella-induced actin assembly during invasion of host cells and intracellular replication. Cellular Microbiology, 2004, 6, 1041-1055.	1.1	85
50	The Release of Vaccinia Virus from Infected Cells Requires RhoA-mDia Modulation of Cortical Actin. Cell Host and Microbe, 2007, 1, 227-240.	5.1	81
51	Vaccinia virus F1L protein promotes virulence by inhibiting inflammasome activation. Proceedings of the United States of America, 2013, 110, 7808-7813.	3.3	81
52	Virus-Induced Cell Motility. Journal of Virology, 1998, 72, 1235-1243.	1.5	77
53	Both Calmodulin and the Unconventional Myosin Myr4 Regulate Membrane Trafficking Along the Recycling Pathway of MDCK Cells. Traffic, 2000, 1, 494-503.	1.3	73
54	The conformational state of Tes regulates its zyxin-dependent recruitment to focal adhesions. Journal of Cell Biology, 2003, 161, 33-39.	2.3	71

#	Article	IF	CITATIONS
55	Interaction of F1L with the BH3 domain of Bak is responsible for inhibiting vaccinia-induced apoptosis. Cell Death and Differentiation, 2006, 13, 1651-1662.	5.0	71
56	Two of the three actin-binding domains of gelsolin bind to the same subdomain of actin Implications for capping and severing mechanisms. FEBS Letters, 1991, 280, 70-74.	1.3	68
57	Wiskott-Aldrich Syndrome Interacting Protein Deficiency Uncovers the Role of the Co-receptor CD19 as a Generic Hub for PI3 Kinase Signaling in B Cells. Immunity, 2015, 43, 660-673.	6.6	68
58	Characterisation of the F-actin binding domains of villin: classification of F-actin binding proteins into two groups according to their binding sites on actin. FEBS Letters, 1994, 338, 58-62.	1.3	66
59	The WH1 and EVH1 Domains of WASP and Ena/VASP Family Members Bind Distinct Sequence Motifs. Current Biology, 2002, 12, 1617-1622.	1.8	66
60	Tes, a Specific Mena Interacting Partner, Breaks the Rules for EVH1 Binding. Molecular Cell, 2007, 28, 1071-1082.	4.5	66
61	Determination of the Gelsolin Binding Site on F-actin: Implications for Severing and Capping. Biophysical Journal, 1998, 74, 764-772.	0.2	64
62	F11L-Mediated Inhibition of RhoA-mDia Signaling Stimulates Microtubule Dynamics during Vaccinia Virus Infection. Cell Host and Microbe, 2007, 1, 213-226.	5.1	63
63	Leucine 255 of Src couples intramolecular interactions to inhibition of catalysis. Nature Structural Biology, 1999, 6, 760-764.	9.7	61
64	WIP Provides an Essential Link between Nck and N-WASP during Arp2/3-Dependent Actin Polymerization. Current Biology, 2013, 23, 999-1006.	1.8	61
65	Structure of the Complex of F-Actin and DNGR-1, a C-Type Lectin Receptor Involved in Dendritic Cell Cross-Presentation of Dead Cell-Associated Antigens. Immunity, 2015, 42, 839-849.	6.6	60
66	African swine fever virus induces filopodia-like projections at the plasma membrane. Cellular Microbiology, 2006, 8, 1803-1811.	1.1	57
67	A Neural Wiskott-Aldrich Syndrome Protein-mediated Pathway for Localized Activation of Actin Polymerization That Is Regulated by Cortactin. Journal of Biological Chemistry, 2005, 280, 5836-5842.	1.6	55
68	Correlative super-resolution fluorescence and electron microscopy using conventional fluorescent proteins in vacuo. Journal of Structural Biology, 2017, 199, 120-131.	1.3	55
69	G-actin regulates the shuttling and PP1 binding of the RPEL protein Phactr1 to control actomyosin assembly. Journal of Cell Science, 2012, 125, 5860-5872.	1.2	54
70	F11-Mediated Inhibition of RhoA Signalling Enhances the Spread of Vaccinia Virus In Vitro and In Vivo in an Intranasal Mouse Model of Infection. PLoS ONE, 2009, 4, e8506.	1.1	53
71	Actin and cell pathogenesis. Current Opinion in Cell Biology, 1997, 9, 62-69.	2.6	52
72	Cdc42 and the RhoGEF Intersectin-1 collaborate with Nck to promote N-WASP-dependent actin polymerisation. Journal of Cell Science, 2014, 127, 673-85.	1.2	52

#	Article	IF	CITATIONS
73	Kidins220/ARMS Is Transported by a Kinesin-1–based Mechanism Likely to be Involved in Neuronal Differentiation. Molecular Biology of the Cell, 2007, 18, 142-152.	0.9	51
74	An additional exon in the human vinculin gene specifically encodes meta-vinculin-specific difference peptide. Cross-species comparison reveals variable and conserved motifs in the meta-vinculin insert. FEBS Journal, 1992, 204, 767-772.	0.2	50
75	A role for N-WASP in invasin-promoted internalisation. FEBS Letters, 2001, 509, 59-65.	1.3	47
76	A fresh start – but business as usual. Journal of Cell Science, 2012, 125, 1-2.	1.2	47
77	Insights into Kinesin-1 Activation from the Crystal Structure of KLC2 Bound to JIP3. Structure, 2018, 26, 1486-1498.e6.	1.6	47
78	Cytoskeletal ups and downs. Nature, 1990, 344, 292-293.	13.7	46
79	Integrin-linked kinase controls vascular wall formation by negatively regulating Rho/ROCK-mediated vascular smooth muscle cell contraction. Genes and Development, 2009, 23, 2278-2283.	2.7	46
80	Nck- and N-WASP-Dependent Actin-Based Motility Is Conserved in Divergent Vertebrate Poxviruses. Cell Host and Microbe, 2009, 6, 536-550.	5.1	46
81	Multiple WASP-interacting Protein Recognition Motifs Are Required for a Functional Interaction with N-WASP. Journal of Biological Chemistry, 2007, 282, 8446-8453.	1.6	44
82	Clathrin Potentiates Vaccinia-Induced Actin Polymerization to Facilitate Viral Spread. Cell Host and Microbe, 2012, 12, 346-359.	5.1	44
83	The non-canonical roles of clathrin and actin in pathogen internalization, egress and spread. Nature Reviews Microbiology, 2013, 11, 551-560.	13.6	43
84	Cdc42 is required for membrane dependent actin polymerization in vitro. FEBS Letters, 1998, 427, 353-356.	1.3	42
85	The role of signalling and the cytoskeleton during Vaccinia Virus egress. Virus Research, 2015, 209, 87-99.	1.1	42
86	Vaccinia Virus F11 Promotes Viral Spread by Acting as a PDZ-Containing Scaffolding Protein to Bind Myosin-9A and Inhibit RhoA Signaling. Cell Host and Microbe, 2013, 14, 51-62.	5.1	40
87	Dynamin is required for F-actin assembly and pedestal formation by enteropathogenic Escherichia coli (EPEC). Cellular Microbiology, 2007, 9, 438-449.	1.1	39
88	An E2-F12 complex is required for intracellular enveloped virus morphogenesis during vaccinia infection. Cellular Microbiology, 2009, 11, 808-824.	1.1	39
89	Conformation and Phasing of Dystrophin Structural Repeats. Journal of Molecular Biology, 1994, 235, 1271-1277.	2.0	38
90	Subproteome analysis of the neutrophil cytoskeleton. Proteomics, 2009, 9, 2037-2049.	1.3	37

#	Article	IF	CITATIONS
91	The Escherichia coli effector EspJ blocks Src kinase activity via amidation and ADP ribosylation. Nature Communications, 2014, 5, 5887.	5.8	37
92	Vaccinia-induced epidermal growth factor receptor-MEK signalling and the anti-apoptotic protein F1L synergize to suppress cell death during infection. Cellular Microbiology, 2009, 11, 1208-1218.	1.1	36
93	Molecular Recognition of the Tes LIM2–3 Domains by the Actin-related Protein Arp7A. Journal of Biological Chemistry, 2011, 286, 11543-11554.	1.6	36
94	Effects of Ectopically Expressed Neuronal Wiskott-Aldrich Syndrome Protein Domains on Rickettsia rickettsii Actin-Based Motility. Infection and Immunity, 2003, 71, 1551-1556.	1.0	34
95	Nck and Cdc42 co-operate to recruit N-WASP to promote FcÎ ³ R-mediated phagocytosis. Journal of Cell Science, 2012, 125, 2825-30.	1.2	34
96	MICAL2 enhances branched actin network disassembly by oxidizing Arp3B-containing Arp2/3 complexes. Journal of Cell Biology, 2021, 220, .	2.3	34
97	Septins suppress the release of vaccinia virus from infected cells. Journal of Cell Biology, 2018, 217, 2911-2929.	2.3	31
98	Molecular Model of an Actin Filament Capped by a Severing Protein. Journal of Structural Biology, 1995, 115, 144-150.	1.3	30
99	B cells extract antigens at Arp2/3-generated actin foci interspersed with linear filaments. ELife, 2019, 8,	2.8	29
100	Lamellipodin tunes cell migration by stabilizing protrusions and promoting adhesion formation. Journal of Cell Science, 2020, 133, .	1.2	28
101	RhoD Inhibits RhoC-ROCK-Dependent Cell Contraction via PAK6. Developmental Cell, 2017, 41, 315-329.e7.	3.1	26
102	Actin branches out. Nature, 1998, 394, 125-126.	13.7	25
103	The Vaccinia Virus-Encoded Bcl-2 Homologues Do Not Act as Direct Bax Inhibitors. Journal of Virology, 2012, 86, 203-213.	1.5	24
104	Loss of Cytoskeletal Transport during Egress Critically Attenuates Ectromelia Virus Infection <i>In Vivo</i> . Journal of Virology, 2012, 86, 7427-7443.	1.5	21
105	Actin assembly induced by polylysine beads or purified phagosomes: Quantitation by a new flow cytometry assay. Cytometry, 2000, 41, 46-54.	1.8	20
106	NPF motifs in the vaccinia virus protein A36 recruit intersectin-1 to promote Cdc42:N-WASP-mediated viral release from infected cells. Nature Microbiology, 2016, 1, 16141.	5.9	20
107	Cytoplasmic ATR Activation Promotes Vaccinia Virus Genome Replication. Cell Reports, 2017, 19, 1022-1032.	2.9	20
108	Binding of Phosphate, Aluminum Fluoride, or Beryllium Fluoride to F-actin Inhibits Severing by Gelsolin. Journal of Biological Chemistry, 1996, 271, 4665-4670.	1.6	19

#	Article	IF	CITATIONS
109	New tricks for an old dog?. Nature Cell Biology, 2001, 3, E74-E75.	4.6	19
110	Deletion of Apoptosis Inhibitor F1L in Vaccinia Virus Increases Safety and Oncolysis for Cancer Therapy. Molecular Therapy - Oncolytics, 2019, 14, 246-252.	2.0	19
111	Cryo-EM of human Arp2/3 complexes provides structural insights into actin nucleation modulation by ARPC5 isoforms. Biology Open, 2020, 9, .	0.6	19
112	In vitro approaches to study actin and microtubule dependent cell processes. Current Opinion in Cell Biology, 1999, 11, 152-158.	2.6	18
113	The vaccinia virus F17R protein interacts with actin. FEBS Letters, 1997, 409, 141-146.	1.3	16
114	<scp>KSHV</scp> ― <scp>TK</scp> is a tyrosine kinase that disrupts focal adhesions and induces Rhoâ€mediated cell contraction. EMBO Journal, 2015, 34, 448-465.	3.5	16
115	Standard fluorescent proteins as dual-modality probes for correlative experiments in an integrated light and electron microscope. Journal of Chemical Biology, 2015, 8, 179-188.	2.2	15
116	The secrets of severing?. Current Biology, 1993, 3, 887-890.	1.8	13
117	Is thymosin-β4 the missing link?. Current Biology, 1991, 1, 307-308.	1.8	12
118	"What I cannot create, I do not understand― Journal of Cell Science, 2017, 130, 2941-2942.	1.2	12
119	Tuning of in vivo cognate B-T cell interactions by Intersectin 2 is required for effective anti-viral B cell immunity. ELife, 2018, 7, .	2.8	12
120	Viral use and subversion of membrane organization and trafficking. Journal of Cell Science, 2021, 134, .	1.2	12
121	Identification of Two Sites in Gelsolin with Different Sensitivities to Adenine Nucleotides. FEBS Journal, 1995, 234, 1-7.	0.2	10
122	Molecular biology of actin binding proteins: evidence for a common structural domain in the F-actin binding sites of gelsolin and <i>α</i> -actinin. Journal of Cell Science, 1991, 1991, 91-94.	1.2	9
123	The San Francisco Declaration on Research Assessment. Journal of Cell Science, 2013, 126, 1903-4.	1.2	9
124	Looking over the Edge. Developmental Cell, 2002, 2, 692-694.	3.1	4
125	New Editor on Journal of Cell Science. Journal of Cell Science, 2017, 130, 303-303.	1.2	4
126	The relative binding position of Nck and Grb2 adaptors impacts actin-based motility of Vaccinia virus. ELife, 0, 11, .	2.8	4

#	Article	IF	CITATIONS
127	Perspective: Hidden treasures from the archives. Biotechnology Journal, 2009, 4, 784-785.	1.8	2
128	Actin Motility: Formin a SCAry Tail. Current Biology, 2011, 21, R27-R30.	1.8	2
129	Actin assembly induced by polylysine beads or purified phagosomes: Quantitation by a new flow cytometry assay. Cytometry, 2000, 41, 46-54.	1.8	2
130	Plus ça change…. Journal of Cell Science, 2015, 128, 4247-4248.	1.2	1
131	Suppression of NYVAC Infection in HeLa Cells Requires RNase L but Is Independent of Protein Kinase R Activity. Journal of Virology, 2016, 90, 2135-2141.	1.5	1
132	Thank you to our peer reviewers in 2021, and a look back over the year. Journal of Cell Science, 2022, 135, .	1.2	1
133	Manipulation of Centrosomes and the Microtubule Cytoskeleton during Infection by Intracellular Pathogens. , 2005, , 371-400.		0
134	Crystallization and preliminary X-ray diffraction analysis of vaccinia virus H1L phosphatase. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 190-192.	0.7	0
135	New JCS Editor. Journal of Cell Science, 2013, 126, 4807-4807.	1.2	0
136	2012 Winners: Vincent Pasque and Aliaksandra Radzisheuskaya. Journal of Cell Science, 2013, 126, 1287-1288.	1.2	0
137	2013 Winner: Liam Cheeseman. Journal of Cell Science, 2014, 127, 2121-2121.	1.2	0
138	2014 Winners: Anne-Lise Gaffuri and Elizabeth Crowell. Journal of Cell Science, 2015, 128, 1255-1256.	1.2	0
139	Andrew Ewald takes the helm of first JCS Guest Editorship. Journal of Cell Science, 2015, 128, 2743-2743.	1.2	0
140	JCS Editor changes. Journal of Cell Science, 2015, 128, 831-831.	1.2	0
141	2015 Winner: Monika Zwerger. Journal of Cell Science, 2016, 129, 1083-1084.	1.2	0
142	The good, the bad and the median. Journal of Cell Science, 2016, 129, 3205-3205.	1.2	0
143	Expression of Concern: GRIM-19-mediated translocation of STAT3 to mitochondria is necessary for TNF-induced necroptosis. Nataly Shulga, John G. Pastorino. J Cell Sci doi: 10.1242/jcs.103093. Journal of Cell Science, 2016, 129, 870-870.	1.2	0
144	Actin'g against the Ball and Chain. Developmental Cell, 2016, 37, 11-12.	3.1	0

#	Article	IF	CITATIONS
145	New Editor on Journal of Cell Science. Journal of Cell Science, 2016, 129, 2287-2287.	1.2	0
146	Journal of Cell Science is going green. Journal of Cell Science, 2016, 129, 3519-3519.	1.2	0
147	Expression of Concern: Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. Nataly Shulga, Robin Wilson-Smith, John G. Pastorino. J Cell Sci doi: 10.1242/jcs.061846. Journal of Cell Science, 2016, 129, 868-868.	1.2	0
148	Expression of Concern: Ethanol sensitizes mitochondria to the permeability transition by inhibiting deacetylation of cyclophilin-D mediated by sirtuin-3. Nataly Shulga, John G. Pastorino. J Cell Sci doi: 10.1242/jcs.073502. Journal of Cell Science, 2016, 129, 869-869.	1.2	0
149	Expression of Concern: Sirtuin-3 modulates Bak- and Bax-dependent apoptosis. Manish Verma, Nataly Shulga, John G. Pastorino. J Cell Sci doi: 10.1242/jcs.115188. Journal of Cell Science, 2016, 129, 871-871.	1.2	0
150	Expression of Concern: Mitoneet mediates TNFα-induced necroptosis promoted by exposure to fructose and ethanol. Nataly Shulga, John G. Pastorino. J Cell Sci doi: 10.1242/jcs.140764. Journal of Cell Science, 2016, 129, 872-872.	1.2	0
151	Publisher's Note – Relating to the retraction of: Oxidative stress inactivates VEGF survival signaling in retinal endothelial cells via PI 3-kinase tyrosine nitration. Azza B. El-Remessy,ÂManuela Bartoli,ÂDanial H. Platt,ÂDavid Fulton,ÂRuth B. Caldwell. J. Cell Sci. doi:10.1242/jcs.195966. Journal of Cell Science, 2017, 130. 1856-1856.	1.2	0
152	Expression of Concern: Chromosomal breaks during mitotic catastrophe trigger γH2AX–ATM–p53-mediated apoptosis. Gabriela Imreh,ÂHelin Vakifahmetoglu Norberg,ÂStefan Imreh,ÂBoris Zhivotovsky. J. Cell Sci.Âdoi:Â10.1242/jcs.081612. Journal of Cell Science, 2017, 130, 1979-1979.	1.2	0
153	Parlez vous immunology?. Journal of Cell Science, 2018, 131, .	1.2	0
154	New Editor on Journal of Cell Science. Journal of Cell Science, 2019, 132, .	1.2	0
155	Thank you to our peer reviewers in 2019. Journal of Cell Science, 2020, 133, .	1.2	0
156	Love your lipids!. Journal of Cell Science, 2020, 133, .	1.2	0
157	Thank you to our peer reviewers in 2020. Journal of Cell Science, 2021, 134, .	1.2	0
158	2020 winner: Tadayoshi Murakawa. Journal of Cell Science, 2021, 134, .	1.2	0
159	Our Editorial Advisory Board is evolving. Journal of Cell Science, 2021, 134, .	1.2	0
160	A motor is not just for quarantine, it's for life!. Journal of Cell Science, 2021, 134, .	1.2	0
161	Essay series on equity, diversity and inclusion in cell biology. Journal of Cell Science, 2022, 135, .	1.2	0