
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1056467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 2015, 8, 11-14.	12.9	547
2	The severity of smouldering peat fires and damage to the forest soil. Catena, 2008, 74, 304-309.	5.0	262
3	Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion. Combustion and Flame, 2006, 146, 95-108.	5.2	200
4	Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environmental Research Letters, 2016, 11, 034014.	5.2	199
5	Pyrolysis of Medium-Density Fiberboard: Optimized Search for Kinetics Scheme and Parameters via a Genetic Algorithm Driven by Kissinger's Method. Energy & Fuels, 2014, 28, 6130-6139.	5.1	165
6	Baseline intrinsic flammability of Earth's ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22448-22453.	7.1	158
7	Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nature Geoscience, 2010, 3, 426-429.	12.9	156
8	The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Safety Journal, 2006, 41, 204-214.	3.1	143
9	Review of emissions from smouldering peat fires and their contribution to regional haze episodes. International Journal of Wildland Fire, 2018, 27, 293.	2.4	133
10	Smouldering combustion of peat in wildfires: Inverse modelling of the drying and the thermal and oxidative decomposition kinetics. Combustion and Flame, 2014, 161, 1633-1644.	5.2	129
11	Travelling fires for structural design–Part I: Literature review. Fire Safety Journal, 2012, 54, 74-85.	3.1	111
12	Travelling fires for structural design-Part II: Design methodology. Fire Safety Journal, 2012, 54, 96-112.	3.1	108
13	Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland. Forest Ecology and Management, 2013, 308, 169-177.	3.2	104
14	Computational smoldering combustion: Predicting the roles of moisture and inert contents in peat wildfires. Proceedings of the Combustion Institute, 2015, 35, 2673-2681.	3.9	98
15	Small-scale forward smouldering experiments for remediation of coal tar in inert media. Proceedings of the Combustion Institute, 2009, 32, 1957-1964.	3.9	95
16	Downward spread of smouldering peat fire: the role of moisture, density and oxygen supply. International Journal of Wildland Fire, 2017, 26, 907.	2.4	93
17	Review—Meta-Review of Fire Safety of Lithium-Ion Batteries: Industry Challenges and Research Contributions. Journal of the Electrochemical Society, 2020, 167, 090559.	2.9	92
18	Study of the competing chemical reactions in the initiation and spread of smouldering combustion in peat. Proceedings of the Combustion Institute, 2013, 34, 2547-2553.	3.9	90

#	Article	IF	CITATIONS
19	Self-Sustaining Smoldering Combustion: A Novel Remediation Process for Non-Aqueous-Phase Liquids in Porous Media. Environmental Science & Technology, 2009, 43, 5871-5877.	10.0	89
20	Carbon emissions from smouldering peat in shallow and strong fronts. Proceedings of the Combustion Institute, 2009, 32, 2489-2496.	3.9	86
21	Round-robin study of a priori modelling predictions of the Dalmarnock Fire Test One. Fire Safety Journal, 2009, 44, 590-602.	3.1	84
22	Kinetic and fuel property effects on forward smoldering combustion. Combustion and Flame, 2000, 120, 346-358.	5.2	80
23	Experimental study of the formation and collapse of an overhang in the lateral spread of smouldering peat fires. Combustion and Flame, 2016, 168, 393-402.	5.2	78
24	Upward-and-downward spread of smoldering peat fire. Proceedings of the Combustion Institute, 2019, 37, 4025-4033.	3.9	78
25	Calculation and design of tunnel ventilation systems using a two-scale modelling approach. Building and Environment, 2009, 44, 2357-2367.	6.9	73
26	Self-Sustaining Smoldering Combustion for NAPL Remediation: Laboratory Evaluation of Process Sensitivity to Key Parameters. Environmental Science & amp; Technology, 2011, 45, 2980-2986.	10.0	72
27	Thermochemical conversion of biomass in smouldering combustion across scales: The roles of heterogeneous kinetics, oxygen and transport phenomena. Bioresource Technology, 2016, 207, 409-421.	9.6	72
28	The effect of chemical composition on the charring of wood across scales. Proceedings of the Combustion Institute, 2019, 37, 4053-4061.	3.9	72
29	Experimental review of the homogeneous temperature assumption in post-flashover compartment fires. Fire Safety Journal, 2010, 45, 249-261.	3.1	71
30	Pyrolysis and ignition of a polymer by transient irradiation. Combustion and Flame, 2016, 163, 31-41.	5.2	70
31	Experimental data and numerical modelling of 1.3 and 2.3MW fires in a 20m cubic atrium. Building and Environment, 2009, 44, 1827-1839.	6.9	66
32	Numerical investigation of the ignition delay time of a translucent solid at high radiant heat fluxes. Combustion and Flame, 2011, 158, 1109-1116.	5.2	65
33	Smoldering Combustion. , 2016, , 581-603.		62
34	Characterisation of Dalmarnock fire Test One. Experimental Thermal and Fluid Science, 2008, 32, 1334-1343.	2.7	61
35	Computational study of critical moisture and depth of burn in peat fires. International Journal of Wildland Fire, 2015, 24, 798.	2.4	61
36	Review of the Transition From Smouldering to Flaming Combustion in Wildfires. Frontiers in Mechanical Engineering, 2019, 5, .	1.8	61

#	Article	IF	CITATIONS
37	Improved Formulation of Travelling Fires and Application to Concrete and Steel Structures. Structures, 2015, 3, 250-260.	3.6	60
38	Computational model of forward and opposed smoldering combustion in microgravity. Proceedings of the Combustion Institute, 2007, 31, 2677-2684.	3.9	59
39	Sensor Assisted Fire Fighting. Fire Technology, 2010, 46, 719-741.	3.0	58
40	Smouldering fire signatures in peat and their implications for palaeoenvironmental reconstructions. Geochimica Et Cosmochimica Acta, 2014, 137, 134-146.	3.9	58
41	Volumetric scale-up of smouldering remediation of contaminated materials. Journal of Hazardous Materials, 2014, 268, 51-60.	12.4	57
42	Analysis of principal gas products during combustion of polyether polyurethane foam at different irradiance levels. Fire Safety Journal, 2009, 44, 933-940.	3.1	56
43	Propagation probability and spread rates of self-sustained smouldering fires under controlled moisture content and bulk density conditions. International Journal of Wildland Fire, 2016, 25, 456.	2.4	55
44	Forced forward smoldering experiments in microgravity. Experimental Thermal and Fluid Science, 2004, 28, 743-751.	2.7	54
45	Simulating longitudinal ventilation flows in long tunnels: Comparison of full CFD and multi-scale modelling approaches in FDS6. Tunnelling and Underground Space Technology, 2016, 52, 119-126.	6.2	54
46	Multiscale modeling of transient flows from fire and ventilation in long tunnels. Computers and Fluids, 2011, 51, 16-29.	2.5	52
47	Relevant model complexity for non-charring polymer pyrolysis. Fire Safety Journal, 2013, 61, 36-44.	3.1	52
48	A multiscale model of wood pyrolysis in fire to study the roles of chemistry and heat transfer at the mesoscale. Combustion and Flame, 2020, 216, 316-325.	5.2	51
49	The influence of travelling fires on a concrete frame. Engineering Structures, 2011, 33, 1635-1642.	5.3	50
50	Pyrolysis kinetics and multi-objective inverse modelling of cellulose at the microscale. Fire Safety Journal, 2017, 91, 191-199.	3.1	49
51	Pyrolysis and spontaneous ignition of wood under transient irradiation: Experiments and a-priori predictions. Fire Safety Journal, 2017, 91, 218-225.	3.1	49
52	Forecasting fire growth using an inverse zone modelling approach. Fire Safety Journal, 2011, 46, 81-88.	3.1	45
53	Self-ignition of natural fuels: Can wildfires of carbon-rich soil start by self-heating?. Fire Safety Journal, 2017, 91, 828-834.	3.1	43
54	lgnition of low-density expandable polystyrene foam by a hot particle. Combustion and Flame, 2015, 162, 4112-4118.	5.2	42

#	Article	IF	CITATIONS
55	Self-heating behavior and ignition of shale rock. Combustion and Flame, 2017, 176, 213-219.	5.2	42
56	Structural analysis of multi-storey steel frames exposed to travelling fires and traditional design fires. Engineering Structures, 2017, 150, 271-287.	5.3	42
57	The Effect of Model Parameters on the Simulation of Fire Dynamics. Fire Safety Science, 2008, 9, 1341-1352.	0.3	42
58	THE EFFECT OF BUOYANCY ON OPPOSED SMOLDERING. Combustion Science and Technology, 2004, 176, 2027-2055.	2.3	41
59	Structural response of a steel-frame building to horizontal and vertical travelling fires in multiple floors. Fire Safety Journal, 2017, 91, 542-552.	3.1	41
60	Transition from forward smoldering to flaming in small polyurethane foam samples. Proceedings of the Combustion Institute, 2005, 30, 2295-2302.	3.9	40
61	Determination of the flammability properties of polymeric materials: A novel method. Polymer Degradation and Stability, 2011, 96, 314-319.	5.8	40
62	Radiant Ignition of Polyurethane Foam: The Effect of Sample Size. Fire Technology, 2014, 50, 673-691.	3.0	40
63	A Novel Multiscale Methodology for Simulating Tunnel Ventilation Flows During Fires. Fire Technology, 2011, 47, 221-253.	3.0	38
64	Effects of spatial heterogeneity in moisture content on the horizontal spread of peat fires. Science of the Total Environment, 2016, 572, 1422-1430.	8.0	38
65	Transient gas and particle emissions from smouldering combustion of peat. Proceedings of the Combustion Institute, 2019, 37, 4035-4042.	3.9	38
66	Forecasting fire dynamics using inverse computational fluid dynamics and tangent linearisation. Advances in Engineering Software, 2012, 47, 114-126.	3.8	36
67	Interactions of Earth's atmospheric oxygen and fuel moisture in smouldering wildfires. Science of the Total Environment, 2016, 572, 1440-1446.	8.0	36
68	Experimental study on the burning behaviour of <i>Pinus halepensis</i> needles using smallâ€scale fire calorimetry of live, aged and dead samples. Fire and Materials, 2016, 40, 385-395.	2.0	35
69	Analysis of the ventilation systems in the Dartford tunnels using a multi-scale modelling approach. Tunnelling and Underground Space Technology, 2010, 25, 423-432.	6.2	34
70	Kinetic investigation on the smouldering combustion of boreal peat. Fuel, 2012, 93, 479-485.	6.4	34
71	Influence of atrium roof geometries on the numerical predictions of fire tests under natural ventilation conditions. Energy and Buildings, 2013, 65, 382-390.	6.7	34
72	Role of optimisation method on kinetic inverse modelling of biomass pyrolysis at the microscale. Fuel, 2020, 262, 116251.	6.4	34

#	Article	IF	CITATIONS
73	Experimental Study of Self-heating Ignition of Lithium-Ion Batteries During Storage: Effect of the Number of Cells. Fire Technology, 2020, 56, 2649-2669.	3.0	33
74	The role of secondary char oxidation in the transition from smoldering to flaming. Proceedings of the Combustion Institute, 2007, 31, 2669-2676.	3.9	32
75	A posteriori modelling of the growth phase of Dalmarnock Fire Test One. Building and Environment, 2011, 46, 1065-1073.	6.9	32
76	Model parameter sensitivity and benchmarking of the explicit dynamic solver of LS-DYNA for structural analysis in case of fire. Fire Safety Journal, 2017, 90, 123-138.	3.1	32
77	Quantifying self-heating ignition of biochar as a function of feedstock and the pyrolysis reactor temperature. Fuel, 2019, 236, 201-213.	6.4	32
78	A computational model to simulate self-heating ignition across scales, configurations, and coal origins. Fuel, 2019, 236, 1100-1109.	6.4	31
79	Development of the Thermal Decomposition Mechanism of Polyether Polyurethane Foam Using Both Condensed and Gas-Phase Release Data. Combustion Science and Technology, 2011, 183, 627-644.	2.3	30
80	On the effect of inverse modelling and compensation effects in computational pyrolysis for fire scenarios. Fire Safety Journal, 2015, 72, 68-76.	3.1	30
81	Self-sustaining smouldering combustion of coal tar for the remediation of contaminated sand: Two-dimensional experiments and computational simulations. Fuel, 2015, 150, 288-297.	6.4	29
82	Experimental measurement of particle size effects on the self-heating ignition of biomass piles: Homogeneous samples of dust and pellets. Fuel, 2019, 256, 115838.	6.4	29
83	Heterogeneous kinetics of timber charring at the microscale. Journal of Analytical and Applied Pyrolysis, 2019, 138, 1-9.	5.5	29
84	Smouldering wildfires in peatlands, forests and the arctic: Challenges and perspectives. Current Opinion in Environmental Science and Health, 2021, 24, 100296.	4.1	29
85	Radiation emission from a heating coil or a halogen lamp on a semitransparent sample. International Journal of Thermal Sciences, 2014, 77, 223-232.	4.9	28
86	Experimental study of moisture content effects on the transient gas and particle emissions from peat fires. Combustion and Flame, 2019, 209, 408-417.	5.2	28
87	Modeling of one-dimensional smoldering of polyurethane in microgravity conditions. Proceedings of the Combustion Institute, 2005, 30, 2327-2334.	3.9	27
88	Experimental study of radiative heat transfer in a translucent fuel sample exposed to different spectral sources. International Journal of Heat and Mass Transfer, 2013, 61, 742-748.	4.8	27
89	The Role of Heat Transfer Limitations in Polymer Pyrolysis at the Microscale. Frontiers in Mechanical Engineering, 2018, 4, .	1.8	27
90	An experimental assessment of the ignition of forest fuels by the thermal pulse generated by the Cretaceous–Palaeogene impact at Chicxulub. Journal of the Geological Society, 2015, 172, 175-185.	2.1	26

#	Article	IF	CITATIONS
91	Effect of oxygen on the burning rate of wood. Combustion and Flame, 2021, 234, 111591.	5.2	26
92	Past and Present Post-Fire Environments. Science of the Total Environment, 2016, 573, 1275-1277.	8.0	25
93	Fire Experiments and Simulations in a Full-scale Atrium Under Transient and Asymmetric Venting Conditions. Fire Technology, 2016, 52, 51-78.	3.0	25
94	Reducing the computational requirements for simulating tunnel fires by combining multiscale modelling and multiple processor calculation. Tunnelling and Underground Space Technology, 2017, 64, 146-153.	6.2	25
95	Smouldering natural fires: comparison of burning dynamics in boreal peat and Mediterranean humus. , 2008, , .		25
96	The piloted transition to flaming in smoldering fire retarded and nonâ€fire retarded polyurethane foam. Fire and Materials, 2008, 32, 485-499.	2.0	24
97	Computational analysis of thermal and structural failure criteria of a multi-storey steel frame exposed to fire. Engineering Structures, 2019, 180, 524-543.	5.3	24
98	Overview of Problems and Solutions in Fire Protection Engineering of Wind Turbines. Fire Safety Science, 2014, 11, 983-995.	0.3	24
99	Comparison of Pyrolysis Behavior Results between the Cone Calorimeter and the Fire Propagation Apparatus Heat Sources. Fire Safety Science, 2011, 10, 889-901.	0.3	23
100	Heat transfer effects on accelerating rate calorimetry of the thermal runaway of Lithium-ion batteries. Chemical Engineering Research and Design, 2022, 162, 684-693.	5.6	23
101	Thermal and oxidative decomposition of bitumen at the Microscale: Kinetic inverse modelling. Fuel, 2020, 264, 116704.	6.4	22
102	Influence of soil conditions on the multidimensional spread of smouldering combustion in shallow layers. Combustion and Flame, 2020, 214, 361-370.	5.2	22
103	Forecasting wind-driven wildfires using an inverse modelling approach. Natural Hazards and Earth System Sciences, 2014, 14, 1491-1503.	3.6	21
104	Fine Particle Emissions From Tropical Peat Fires Decrease Rapidly With Time Since Ignition. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5607-5617.	3.3	21
105	Analysis of the Thermomechanical Response of Structural Cables Subject to Fire. Fire Technology, 2020, 56, 515-543.	3.0	21
106	A Comparison of Three Models for the Simulation of Accidental Fires. Journal of Fire Protection Engineering, 2006, 16, 183-209.	0.8	20
107	Numerical investigation of downward smoldering combustion in an organic soil column. International Journal of Heat and Mass Transfer, 2015, 84, 253-261.	4.8	20
108	Reduced chemical kinetics for microscale pyrolysis of softwood and hardwood. Bioresource Technology, 2020, 301, 122619.	9.6	19

#	Article	IF	CITATIONS
109	Simultaneous improvements in flammability and mechanical toughening of epoxy resins through nano-silica addition. Fire Safety Journal, 2017, 91, 200-207.	3.1	17

A novel method for simulating smoldering propagation and its application to STAR (Self-sustaining) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

111	Special Issue on Fire Model Validation. Fire Technology, 2016, 52, 1-4.	3.0	16
112	Probabilistic Study of the Resistance of a Simply-Supported Reinforced Concrete Slab According to Eurocode Parametric Fire. Fire Technology, 2019, 55, 1377-1404.	3.0	15
113	Laboratory study on the suppression of smouldering peat wildfires: effects of flow rate and wetting agent. International Journal of Wildland Fire, 2021, 30, 378-390.	2.4	15
114	Burning and Water Suppression of Smoldering Coal Fires in Small-Scale Laboratory Experiments. , 2011, , 317-326.		14
115	Two-dimensional model of smouldering combustion using multi-layer cellular automaton: The role of ignition location and direction of airflow. Fire Safety Journal, 2017, 91, 243-251.	3.1	14
116	Flame extension and the near field under the ceiling for travelling fires inside large compartments. Fire and Materials, 2020, 44, 423-436.	2.0	14
117	Numerical Study of Self-Heating Ignition of a Box of Lithium-Ion Batteries During Storage. Fire Technology, 2020, 56, 2603-2621.	3.0	14
118	Thermal Response of Timber Slabs Exposed to Travelling Fires and Traditional Design Fires. Fire Technology, 2021, 57, 393-414.	3.0	14
119	Numerical study of scale effects on self-heating ignition of lithium-ion batteries stored in boxes, shelves and racks. Applied Thermal Engineering, 2021, 190, 116780.	6.0	14
120	Fire Experiment Inside a Very Large and Open-Plan Compartment: x-ONE. Fire Technology, 2022, 58, 905-939.	3.0	14
121	Self-heating ignition of large ensembles of Lithium-ion batteries during storage with different states of charge and cathodes. Applied Thermal Engineering, 2021, 197, 117349.	6.0	14
122	Computational study on self-heating ignition and smouldering spread of coal layers in flat and wedge hot plate configurations. Combustion and Flame, 2020, 214, 346-357.	5.2	13
123	Small-scale experiments of self-sustaining decomposition of NPK fertilizer and application to events aboard the Ostedijk in 2007. Journal of Hazardous Materials, 2011, 186, 731-737.	12.4	12
124	Comparative Study To Evaluate the Drying Kinetics of Boreal Peats from Micro to Macro Scales. Energy & Fuels, 2012, 26, 349-356.	5.1	12
125	Review and Validation of the Current Smoke Plume Entrainment Models for Large-Volume Buildings. Fire Technology, 2019, 55, 789-816.	3.0	12
126	A multi-step reaction scheme to simulate self-heating ignition of coal: Effects of oxygen adsorption and smouldering combustion. Proceedings of the Combustion Institute, 2021, 38, 4717-4725.	3.9	12

#	Article	IF	CITATIONS
127	Propensity to self-heating ignition of open-circuit pouch lithium-ion battery pile on a hot boundary. Fire Safety Journal, 2021, 120, 103081.	3.1	11
128	Fire dynamics inside a large and openâ€plan compartment with exposed timber ceiling and columns: <i><scp>CodeRed</scp> #01</i> . Fire and Materials, 2023, 47, 542-568.	2.0	11
129	Factors Affecting the Make-Up Air and Their Influence on the Dynamics of Atrium Fires. Fire Technology, 2018, 54, 1067-1091.	3.0	10
130	Experimental and computational study of smoke dynamics from multiple fire sources inside a large-volume building. Building Simulation, 2021, 14, 1147-1161.	5.6	10
131	Anisotropic and homogeneous model of heat transfer for self-heating ignition of large ensembles of lithium-ion batteries during storage. Applied Thermal Engineering, 2021, 197, 117301.	6.0	10
132	Fires: fund research for citizen safety. Nature, 2017, 551, 300-300.	27.8	10
133	On physical and mathematical modeling of the initiation and propagation of peat fires. Journal of Engineering Physics and Thermophysics, 2009, 82, 1235-1243.	0.6	9
134	Smoldering Combustion Phenomena and Coal Fires. , 2011, , 307-315.		9
135	Spontaneous ignition of soils: a multi-step reaction scheme to simulate self-heating ignition of smouldering peat fires. International Journal of Wildland Fire, 2021, 30, 440-453.	2.4	9
136	Smouldering and its transition to flaming combustion of polyurethane foam: An experimental study. Fuel, 2022, 309, 122249.	6.4	9
137	Even Greater than the Sum of Its Parts. Fire Technology, 2014, 50, 1-1.	3.0	8
138	Flammability hazards of typical fuels used in wind turbine nacelle. Fire and Materials, 2018, 42, 770-781.	2.0	8
139	Convective ignition of polymers: New apparatus and application to a thermoplastic polymer. Proceedings of the Combustion Institute, 2019, 37, 4193-4200.	3.9	8
140	Haze emissions from smouldering peat: The roles of inorganic content and bulk density. Fire Safety Journal, 2020, 113, 102940.	3.1	8
141	Using cellular automata to simulate field-scale flaming and smouldering wildfires in tropical peatlands. Proceedings of the Combustion Institute, 2021, 38, 5119-5127.	3.9	8
142	Effects of Fire Retardants and Nanofillers on the Fire Toxicity. ACS Symposium Series, 2009, , 342-366.	0.5	7
143	Numerical Investigation of Thermal Responses of a Composite Structure in Horizontally Travelling fires Using OpenSees. Procedia Engineering, 2013, 62, 736-744.	1.2	7
144	Computational study of how inert additives affect the flammability of a polymer. Fire Safety Journal, 2019, 106, 189-196.	3.1	7

#	Article	IF	CITATIONS
145	Smoldering propensity in upholstered furniture: Effects of mock-up configuration and foam thickness. Applied Thermal Engineering, 2020, 181, 115873.	6.0	7
146	Spatially resolved horizontal spread in smouldering peat combining infrared and visual diagnostics. Combustion and Flame, 2020, 220, 328-336.	5.2	7
147	Study of wildfire in-draft flows for counter fire operations. WIT Transactions on Ecology and the Environment, 2008, , .	0.0	7
148	Experimental study of the effect of the state of charge on self-heating ignition of large ensembles of lithium-ion batteries in storage. Applied Thermal Engineering, 2022, 212, 118621.	6.0	7
149	Ignition and Burning of Fibreboard Exposed to Transient Irradiation. Fire Technology, 2021, 57, 1095-1113.	3.0	6
150	Forecasting Fire Growth using an Inverse CFD Modelling Approach in a Real-Scale Fire Test. Fire Safety Science, 2011, 10, 1349-1358.	0.3	6
151	Impact of ventilation on the fire dynamics of an openâ€plan compartment with exposed timber ceiling and columns: <i>CodeRed #02</i> . Fire and Materials, 2023, 47, 569-596.	2.0	6
152	IMPROVED TRAVELLING FIRES METHODOLOGY - iTFM. Applications of Structural Fire Engineering, 2016, , .	0.3	5
153	9/11 World Trade Center Attacks: Lessons in Fire Safety Engineering After the Collapse of the Towers. Fire Technology, 2013, 49, 583-585.	3.0	4
154	Modeling fire-induced radiative heat transfer in smoke-filled structural cavities. International Journal of Thermal Sciences, 2013, 66, 24-33.	4.9	4
155	Detection of landmines in peat soils by controlled smouldering combustion: Experimental proof of concept of O-Revealer. Experimental Thermal and Fluid Science, 2017, 88, 632-638.	2.7	4
156	Computer simulation of sunlight concentration due to façade shape: application to the 2013 Death Ray at Fenchurch Street, London. Journal of Building Performance Simulation, 2019, 12, 378-387.	2.0	4
157	Structural Engineering and Fire Dynamics: Advances at the Interface. Fire Safety Science, 2011, 10, 1563-1576.	0.3	4
158	Investigation of the Fertilizer Fire aboard the Ostedijk. Fire Safety Science, 2008, 9, 1091-1101.	0.3	4
159	Simulation of fingering behavior in smoldering combustion using a cellular automaton. Physical Review E, 2019, 99, 023314.	2.1	3
160	Influence of wind and slope on multidimensional smouldering peat fires. Proceedings of the Combustion Institute, 2021, 38, 5033-5041.	3.9	3
161	Time-dependent Multiscale Simulations of Fire Emergencies in Longitudinally Ventilated Tunnels. Fire Safety Science, 2011, 10, 359-372.	0.3	3
162	Carbon Monoxide Diffusion Through Porous Walls: Evidence Found in Incidents and Experimental Studies. Frontiers in Built Environment, 2018, 4, .	2.3	2

GUILLERMO REIN

0

#	Article	IF	CITATIONS
163	Acceptance Criteria for Unbonded Post-Tensioned Concrete Exposed to Travelling and Traditional Design Fires. Fire Technology, 2020, 56, 1229-1252.	3.0	2
164	Unexpected Oscillations in Fire Modelling Inside a Long Tunnel. Fire Technology, 2020, 56, 1937-1941.	3.0	2
165	Piloted Ignition to Flaming in Smoldering Polyurethane Foam. , 2006, , .		1
166	Breakthrough in the understanding of flaming wildfires. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9795-9796.	7.1	1
167	Microgravity Forward Smolder Experiments in the Space Shuttle. , 2003, , .		0
168	Forensic Analysis of Fire Induced Structural Failure. , 2009, , 363-371.		0
169	Guest Editorial: Wildfires, Fire Science and Fire Safety Engineering. Fire Technology, 2011, 47, 293-294.	3.0	0
170	Using active systems to control tunnel fire events. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2012, 165, 245-252.	0.4	0
171	Self-Sustained Smoldering Combustion of a Coal-Waste Heap in Central Scotland. , 2013, , 395-405.		0
172	Editorial: Knowing is Not Enough, We Must Apply. Fire Technology, 2013, 49, 3-3.	3.0	0
173	Special Issue in Fire Hazards in Energy Systems. Fire Technology, 2016, 52, 285-287.	3.0	0

174 Preface to Volume 4. , 2015, , xiii.