
Thomas Ty Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10563372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resveratrol differentially modulates immune responses in human THP-1 monocytes and macrophages. Nutrition Research, 2019, 72, 57-69.	1.3	14
2	Suppression of T lymphocyte activation by 3-chloro-1,2-propanediol mono- and di-palmitate esters in vitro. Toxicology in Vitro, 2018, 51, 54-62.	1.1	11
3	Preparation of five 3â€ <scp>MCPD</scp> fatty acid esters, and the effects of their chemical structures on acute oral toxicity in Swiss mice. Journal of the Science of Food and Agriculture, 2017, 97, 841-848.	1.7	36
4	Establishing health benefits of bioactive food components: a basic research scientist's perspective. Current Opinion in Biotechnology, 2017, 44, 109-114.	3.3	16
5	Absorption, Distribution, Metabolism and Excretion of 3-MCPD 1-Monopalmitate after Oral Administration in Rats. Journal of Agricultural and Food Chemistry, 2017, 65, 2609-2614.	2.4	25
6	3-MCPD 1-Palmitate Induced Tubular Cell Apoptosis <i>In Vivo</i> via JNK/p53 Pathways. Toxicological Sciences, 2016, 151, 181-192.	1.4	22
7	Pleiotropic effects of the sirtuin inhibitor sirtinol involves concentrationâ€dependent modulation of multiple nuclear receptorâ€mediated pathways in androgenâ€responsive prostate cancer cell LNCaP. Molecular Carcinogenesis, 2013, 52, 676-685.	1.3	17
8	Strong and weak plasma response to dietary carotenoids identified by cluster analysis and linked to beta-carotene 15,15'-monooxygenase 1 single nucleotide polymorphisms. Journal of Nutritional Biochemistry, 2013, 24, 1538-1546.	1.9	50
9	Encapsulation of indole-3-carbinol and 3,3′-diindolylmethane in zein/carboxymethyl chitosan nanoparticles with controlled release property and improved stability. Food Chemistry, 2013, 139, 224-230.	4.2	195
10	Indole-3-Carbinol and 3′,3′-Diindolylmethane Modulate Androgen's Effect on C-C Chemokine Ligand 2 and Monocyte Attraction to Prostate Cancer Cells. Cancer Prevention Research, 2013, 6, 519-529.	0.7	14
11	Chemical composition and anti-proliferative and anti-inflammatory effects of the leaf and whole-plant samples of diploid and tetraploid Gynostemma pentaphyllum (Thunb.) Makino. Food Chemistry, 2012, 132, 125-133.	4.2	48
12	Three new flavanonol glycosides from leaves of Engelhardtia roxburghiana, and their anti-inflammation, antiproliferative and antioxidant properties. Food Chemistry, 2012, 132, 788-798.	4.2	16
13	Phenolic composition and nutraceutical properties of organic and conventional cinnamon and peppermint. Food Chemistry, 2012, 132, 1442-1450.	4.2	97
14	Broccoliâ€derived phytochemicals indoleâ€3â€carbinol and 3,3′â€diindolylmethane exerts concentrationâ€dependent pleiotropic effects on prostate cancer cells: Comparison with other cancer preventive phytochemicals. Molecular Carcinogenesis, 2012, 51, 244-256.	1.3	58
15	Ligand, receptor, and cell type–dependent regulation of <i>ABCA1</i> and <i>ABCG1</i> mRNA in prostate cancer epithelial cells. Molecular Cancer Therapeutics, 2009, 8, 1934-1945.	1.9	40
16	17β-estradiol differentially regulates androgen-responsive genes through estrogen receptor-β- and extracellular-signal regulated kinase-dependent pathways in LNCaP human prostate cancer cells. Molecular Carcinogenesis, 2007, 46, 117-129.	1.3	27
17	Estrogen receptor α as a target for indole-3-carbinol. Journal of Nutritional Biochemistry, 2006, 17, 659-664.	1.9	67
18	Genistein affects androgen-responsive genes through both androgen- and estrogen-induced signaling pathways. Molecular Carcinogenesis, 2006, 45, 18-25.	1.3	25

THOMAS TY WANG

#	Article	IF	CITATIONS
19	Molecular signatures of soy-derived phytochemicals in androgen-responsive prostate cancer cells: A comparison study using DNA microarray. Molecular Carcinogenesis, 2006, 45, 943-956.	1.3	27
20	Using DNA microarray analyses to elucidate the effects of genistein in androgen-responsive prostate cancer cells: Identification of novel targets. Molecular Carcinogenesis, 2004, 41, 108-119.	1.3	49
21	β-Naphthoflavone, an Inducer of Xenobiotic Metabolizing Enzymes, Inhibits Firefly Luciferase Activity. Analytical Biochemistry, 2002, 304, 122-126.	1.1	17
22	Coordinated regulation of two TRAIL-R2/KILLER/DR5 mRNA isoforms by DNA damaging agents, serum and 17β-estradiol in human breast cancer cells. Breast Cancer Research and Treatment, 2000, 61, 87-96.	1.1	23
23	Effects of calorie restriction on thymocyte growth, death and maturation. Carcinogenesis, 2000, 21, 1959-1964.	1.3	31
24	Regulation of death promoter Bak expression by cell density and 17β-estradiol in MCF-7 cells. Cancer Letters, 1998, 124, 47-52.	3.2	31
25	Effects of dehydroepiandrosterone and calorie restriction on the Bcl-2/Bax-mediated apoptotic pathway in p53-deficient mice. Cancer Letters, 1997, 116, 61-69.	3.2	28
26	Effect of N-(4-hydroxyphenyl)retinamide on apoptosis in human breast cancer cells. Cancer Letters, 1996, 107, 65-71.	3.2	39
27	Molecular effects of genistein on estrogen receptor mediated pathways. Carcinogenesis, 1996, 17, 271-275.	1.3	443