
Xufeng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10563240/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid Magnonics for Short-Wavelength Spin Waves Facilitated by a Magnetic Heterostructure. Physical Review Applied, 2022, 17, .	3.8	6
2	Detecting Phase-Resolved Magnetization Dynamics by Magneto-Optic Effects at 1550 nm Wavelength. IEEE Transactions on Magnetics, 2021, 57, 1-7.	2.1	3
3	Quantum Engineering With Hybrid Magnonic Systems and Materials <i>(Invited Paper)</i> . IEEE Transactions on Quantum Engineering, 2021, 2, 1-36.	4.9	69
4	Coherent Gate Operations in Hybrid Magnonics. Physical Review Letters, 2021, 126, 207202.	7.8	16
5	Coherent Pulse Echo in Hybrid Magnonics with Multimode Phonons. Physical Review Applied, 2021, 16, .	3.8	11
6	Probing magnon–magnon coupling in exchange coupled Y\$\$_3\$\$Fe\$\$_5\$\$O\$\$_{12}\$\$/Permalloy bilayers with magneto-optical effects. Scientific Reports, 2020, 10, 12548.	3.3	23
7	Floquet Cavity Electromagnonics. Physical Review Letters, 2020, 125, 237201.	7.8	39
8	Broadband Nonreciprocity Enabled by Strong Coupling of Magnons and Microwave Photons. Physical Review Applied, 2020, 13, .	3.8	56
9	Waveguide cavity optomagnonics for microwave-to-optics conversion. Optica, 2020, 7, 1291.	9.3	84
10	Experimental Observation of an Exceptional Surface in Synthetic Dimensions with Magnon Polaritons. Physical Review Letters, 2019, 123, 237202.	7.8	112
11	Patterned growth of crystalline Y3Fe5O12 nanostructures with engineered magnetic shape anisotropy. Applied Physics Letters, 2017, 110, .	3.3	34
12	Low loss spin wave resonances in organic-based ferrimagnet vanadium tetracyanoethylene thin films. Applied Physics Letters, 2016, 109, .	3.3	25
13	Superstrong coupling of thin film magnetostatic waves with microwave cavity. Journal of Applied Physics, 2016, 119, .	2.5	62
14	Optomagnonics in magnetic solids. Physical Review B, 2016, 94, .	3.2	90
15	Optomagnonic Whispering Gallery Microresonators. Physical Review Letters, 2016, 117, 123605.	7.8	278
16	Cavity magnomechanics. Science Advances, 2016, 2, e1501286.	10.3	395
17	Magnon dark modes and gradient memory. Nature Communications, 2015, 6, 8914.	12.8	293

18 Triply resonant cavity electro-optomechanics at X-band. , 2014, , .

0

XUFENG ZHANG

#	Article	IF	CITATIONS
19	Strongly Coupled Magnons and Cavity Microwave Photons. Physical Review Letters, 2014, 113, 156401.	7.8	693
20	Electric-Field Coupling to Spin Waves in a Centrosymmetric Ferrite. Physical Review Letters, 2014, 113, 037202.	7.8	81
21	Triply resonant cavity electro-optomechanics at X-band. New Journal of Physics, 2014, 16, 063060.	2.9	16
22	Switchable Optical Frequency Comb in Aluminum Nitride Microring Resonator. , 2014, , .		0
23	Optical frequency comb generation from aluminum nitride microring resonator. Optics Letters, 2013, 38, 2810.	3.3	215
24	Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium. Scientific Reports, 2013, 3, 1436.	3.3	26
25	Nonlinear optical effects of ultrahigh-Q wavelength-sized silicon disk cavities immersed in superfluid helium. , 2013, , .		Ο
26	A 116-μm-radius disk cavity in a sunflower-type circular photonic crystal with ultrahigh quality factor. Optics Letters, 2012, 37, 3195.	3.3	12
27	High- <i>Q</i> silicon optomechanical microdisk resonators at gigahertz frequencies. Applied Physics Letters, 2012, 100, .	3.3	65
28	A superhigh-frequency optoelectromechanical system based on a slotted photonic crystal cavity. Applied Physics Letters, 2012, 101, .	3.3	28
29	Compact, widely tunable, half-lambda YIG oscillator. , 2012, , .		5
30	Guiding Terahertz Waves by a Single Row of Periodic Holes on a Planar Metal Surface. Plasmonics, 2011, 6, 301-305.	3.4	20
31	Wedge mode of spoof surface plasmon polaritons at terahertz frequencies. Journal of Applied Physics, 2010, 108, 113104.	2.5	52
32	Low-frequency surface plasmon polaritons propagating along a metal film with periodic cut-through slits in symmetric or asymmetric environments. Journal of Applied Physics, 2009, 105, .	2.5	22