
Jana Kusch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1056259/publications.pdf Version: 2024-02-01

IANA KUSCH

#	Article	IF	CITATIONS
1	Functional and structural characterization of interactions between opposite subunits in HCN pacemaker channels. Communications Biology, 2022, 5, 430.	4.4	1
2	Allosteric signaling in C-linker and cyclic nucleotide-binding domain of HCN2 channels. Biophysical Journal, 2021, 120, 950-963.	0.5	8
3	Uncoupling the cAMP Binding Domain from the Channel Gate in HCN2 Channels. Biophysical Journal, 2019, 116, 108a.	0.5	0
4	Opposing Subunits Interact to Stabilize the Closed State in HCN2 Channels. Biophysical Journal, 2019, 116, 108a.	0.5	0
5	N6-modified cAMP derivatives that activate protein kinase A also act as full agonists of murine HCN2 channels. Journal of Biological Chemistry, 2019, 294, 17978-17987.	3.4	1
6	The 2018 correlative microscopy techniques roadmap. Journal Physics D: Applied Physics, 2018, 51, 443001.	2.8	99
7	All four subunits of HCN2 channels contribute to the activation gating in an additive but intricate manner. Journal of General Physiology, 2018, 150, 1261-1271.	1.9	15
8	Role of Individual Camp Binding Sites on Relieving the Autoinhibition in HCN Channels. Biophysical Journal, 2017, 112, 422a.	0.5	0
9	A Fluorescent Agonist of the Muscle Nicotinic Acetylcholine Receptor. Biophysical Journal, 2017, 112, 552a-553a.	0.5	Ο
10	Deciphering the function of the CNGB1b subunit in olfactory CNG channels. Scientific Reports, 2016, 6, 29378.	3.3	19
11	Elucidating the Link Between Structure and Function of Ion Channels and Transporters with Voltage-Clamp and Patch-Clamp Fluorometry. Neuromethods, 2016, , 67-95.	0.3	Ο
12	Stepchild Nicotine: Effect of the Name-Giving Agonist on Muscle-Type Nicotinic Acetylcholine Receptor. Biophysical Journal, 2015, 108, 430a.	0.5	0
13	Conformational Flip of Nonactivated HCN2 Channel Subunits Evoked by Cyclic Nucleotides. Biophysical Journal, 2015, 109, 2268-2276.	0.5	18
14	Structure of the SthK Carboxy-Terminal Region Reveals a Gating Mechanism for Cyclic Nucleotide-Modulated Ion Channels. PLoS ONE, 2015, 10, e0116369.	2.5	31
15	The Bile Acid-Sensitive Ion Channel (BASIC) Is Activated by Alterations of Its Membrane Environment. PLoS ONE, 2014, 9, e111549.	2.5	19
16	Patch-Clamp Fluorometry: Electrophysiology meets Fluorescence. Biophysical Journal, 2014, 106, 1250-1257.	0.5	27
17	A Family of HCN Channel Homologs in Bacteria. Biophysical Journal, 2014, 106, 760a.	0.5	0
18	Family of prokaryote cyclic nucleotide-modulated ion channels. Proceedings of the National Academy of Sciences of the United States of America. 2014, 111, 7855-7860.	7.1	54

Jana Kusch

#	Article	IF	CITATIONS
19	Probability Fluxes and Transition Paths in a Markovian Model Describing Complex Subunit Cooperativity in HCN2 Channels. Biophysical Journal, 2013, 104, 280a.	0.5	0
20	Voltage- and Camp-Dependent Gating in Heterotetrameric HCN2/4-Pacemaker Channels. Biophysical Journal, 2013, 104, 279a.	0.5	0
21	Probability Fluxes and Transition Paths in a Markovian Model Describing Complex Subunit Cooperativity in HCN2 Channels. PLoS Computational Biology, 2012, 8, e1002721.	3.2	12
22	Differential Regulation by Cyclic Nucleotides of the CNGA4 and CNGB1b Subunits in Olfactory Cyclic Nucleotide–Gated Channels. Science Signaling, 2012, 5, ra48.	3.6	26
23	How to Define Cooperativity for the Ligand-Induced Gating of HCN2 Channels?. Biophysical Journal, 2012, 102, 129a.	0.5	0
24	Functional Role of the Modulatory Subunits in the Olfactory CNG Channels. Biophysical Journal, 2012, 102, 130a-131a.	0.5	0
25	Functional Dimeric Organization of the Tetrameric HCN2 Pacemaker Channel. Biophysical Journal, 2012, 102, 131a.	0.5	0
26	How subunits cooperate in cAMP-induced activation of homotetrameric HCN2 channels. Nature Chemical Biology, 2012, 8, 162-169.	8.0	70
27	Analysis and Minimization of Ligand Concentration Errors at the Internal Face of Excised Patches. Biophysical Journal, 2011, 100, 104a.	0.5	0
28	Voltage Gated Trapping of fcAMP in HCN2 Channels. Biophysical Journal, 2010, 98, 708a.	0.5	0
29	Interaction Energies between Intracellular Regions in CNG Channel Activation. Biophysical Journal, 2010, 98, 706a-707a.	0.5	0
30	Ligand Binding and Activation Gating in CNGA2A4B1b Channels. Biophysical Journal, 2010, 98, 706a.	0.5	0
31	Role of the S4-S5 Linker in CNG Channel Activation. Biophysical Journal, 2010, 99, 2488-2496.	0.5	10
32	Interdependence of Receptor Activation and Ligand Binding in HCN2 Pacemaker Channels. Neuron, 2010, 67, 75-85.	8.1	100
33	Adding new dimensions to fluorescence microscopy. Proceedings of SPIE, 2009, , .	0.8	0
34	Thermodynamics of Activation Gating in Olfactory-Type Cyclic Nucleotide-Gated (CNGA2) Channels. Biophysical Journal, 2008, 95, 2750-2758.	0.5	6
35	Relating ligand binding to activation gating in CNGA2 channels. Nature, 2007, 446, 440-443.	27.8	130
36	Gating of Cyclic Nucleotide-Gated (CNGA1) Channels by cGMP Jumps and Depolarizing Voltage Steps. Biophysical Journal, 2006, 90, 3146-3154.	0.5	12

Jana Kusch

#	Article	IF	CITATIONS
37	Activation of olfactory-type cyclic nucleotide-gated channels is highly cooperative. Journal of Physiology, 2005, 569, 91-102.	2.9	39
38	Effects of permeating ions and cGMP on gating and conductance of rod-type cyclic nucleotide-gated (CNGA1) channels. Journal of Physiology, 2004, 560, 605-616.	2.9	11
39	Molecular Regions Controlling the Activity of Cng Channels. Journal of General Physiology, 2001, 118, 183-192.	1.9	13