Chih-Pin Chuu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1056253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Omega-3 fatty acids and blood-based biomarkers in Alzheimer's disease and mild cognitive impairment: A randomized placebo-controlled trial. Brain, Behavior, and Immunity, 2022, 99, 289-298.	4.1	33
2	Comparison of laboratory diagnosis, clinical manifestation, and management of pulmonary cryptococcosis: Report of the clinical scenario and literature review. Clinica Chimica Acta, 2022, 524, 78-83.	1.1	11
3	Disruption of the pentraxin 3/CD44 interaction as an efficient therapy for tripleâ€negative breast cancers. Clinical and Translational Medicine, 2022, 12, e724.	4.0	17
4	The role of anti-platelet factor 4 antibodies and platelet activation tests in patients with vaccine-induced immune thrombotic thrombocytopenia: Brief report on a comparison of the laboratory diagnosis and literature review. Clinica Chimica Acta, 2022, 529, 42-45.	1.1	8
5	Combination treatment of docetaxel with caffeic acid phenethyl ester suppresses the survival and the proliferation of docetaxel-resistant prostate cancer cells via induction of apoptosis and metabolism interference. Journal of Biomedical Science, 2022, 29, 16.	7.0	17
6	Inhibition of KDM4C/câ€Myc/LDHA signalling axis suppresses prostate cancer metastasis via interference of glycolytic metabolism. Clinical and Translational Medicine, 2022, 12, e764.	4.0	8
7	Combination of Multidisciplinary Therapies Successfully Treated Refractory Ventricular Arrhythmia in a STEMI Patient: Case Report and Literature Review. Healthcare (Switzerland), 2022, 10, 507.	2.0	1
8	Identification of a Steroid Hormone-Associated Gene Signature Predicting the Prognosis of Prostate Cancer through an Integrative Bioinformatics Analysis. Cancers, 2022, 14, 1565.	3.7	4
9	Novel insights into the anti-cancer effects of 3-bromopyruvic acid against castration-resistant prostate cancer. European Journal of Pharmacology, 2022, 923, 174929.	3.5	1
10	Natural product myricetin is a pan-KDM4 inhibitor which with poly lactic-co-glycolic acid formulation effectively targets castration-resistant prostate cancer. Journal of Biomedical Science, 2022, 29, 29.	7.0	10
11	Screening of organoids derived from patients with breast cancer implicates the repressor NCOR2 in cytotoxic stress response and antitumor immunity. Nature Cancer, 2022, 3, 734-752.	13.2	12
12	Aspalathus linearis suppresses cell survival and proliferation of enzalutamide-resistant prostate cancer cells via inhibition of c-Myc and stability of androgen receptor. PLoS ONE, 2022, 17, e0270803.	2.5	2
13	Targeting KDM4B that coactivates c-Myc-regulated metabolism to suppress tumor growth in castration-resistant prostate cancer. Theranostics, 2021, 11, 7779-7796.	10.0	20
14	Arginine starvation elicits chromatin leakage and cGAS-STING activation via epigenetic silencing of metabolic and DNA-repair genes. Theranostics, 2021, 11, 7527-7545.	10.0	25
15	Identification of DNA Damage Repair-Associated Prognostic Biomarkers for Prostate Cancer Using Transcriptomic Data Analysis. International Journal of Molecular Sciences, 2021, 22, 11771.	4.1	6
16	Endothelin-1 stimulates preadipocyte growth via the PKC, STAT3, AMPK, c-JUN, ERK, sphingosine kinase, and sphingomyelinase pathways. American Journal of Physiology - Cell Physiology, 2020, 319, C839-C857.	4.6	3
17	Targeting the histone demethylase PHF8-mediated PKCα-Src-PTEN axis in HER2-negative gastric cancer. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24859-24866.	7.1	18
18	Comparison of Clinical Manifestations, Treatments, and Outcomes between Vespidae Sting and Formicidae Sting Patients in the Emergency Department in Taiwan. International Journal of Environmental Research and Public Health, 2020, 17, 6162.	2.6	3

Снін-Рім Снии

#	Article	IF	CITATIONS
19	Betel Nut Arecoline Induces Different Phases of Growth Arrest between Normal and Cancerous Prostate Cells through the Reactive Oxygen Species Pathway. International Journal of Molecular Sciences, 2020, 21, 9219.	4.1	11
20	New classification may assist the development of targeted therapies for treatment-refractory castration-resistant prostate cancer. Translational Andrology and Urology, 2020, 9, 837-839.	1.4	2
21	ROR2 suppresses metastasis of prostate cancer via regulation of miR-199a-5p–PIAS3–AKT2 signaling axis. Cell Death and Disease, 2020, 11, 376.	6.3	25
22	Aspalathin-rich green Aspalathus linearis extract suppresses migration and invasion of human castration-resistant prostate cancer cells via inhibition of YAP signaling. Phytomedicine, 2020, 69, 153210.	5.3	12
23	Usability of Wearable Devices With a Novel Cardiac Force Index for Estimating the Dynamic Cardiac Function: Observational Study. JMIR MHealth and UHealth, 2020, 8, e15331.	3.7	10
24	Rooibos suppresses proliferation of castration-resistant prostate cancer cells via inhibition of Akt signaling. Phytomedicine, 2019, 64, 153068.	5.3	15
25	Histone Demethylase KDM4C Stimulates the Proliferation of Prostate Cancer Cells via Activation of AKT and c-Myc. Cancers, 2019, 11, 1785.	3.7	25
26	Caffeic acid phenethyl ester suppresses androgen receptor signaling and stability via inhibition of phosphorylation on Ser81 and Ser213. Cell Communication and Signaling, 2019, 17, 100.	6.5	14
27	KDM4B is a coactivator of c-Jun and involved in gastric carcinogenesis. Cell Death and Disease, 2019, 10, 68.	6.3	24
28	TNF-α-induced miR-450a mediates TMEM182 expression to promote oral squamous cell carcinoma motility. PLoS ONE, 2019, 14, e0213463.	2.5	23
29	Synchronous vascular endothelial growth factor protein profiles in both tissue and serum identify metastasis and poor survival in colorectal cancer. Scientific Reports, 2019, 9, 4228.	3.3	8
30	Ptosis and macroglossia in a woman with systemic light-chain amyloidosis. Clinica Chimica Acta, 2019, 494, 112-115.	1.1	1
31	CD44 Promotes Migration and Invasion of Docetaxel-Resistant Prostate Cancer Cells Likely via Induction of Hippo-Yap Signaling. Cells, 2019, 8, 295.	4.1	68
32	Polymorphisms of suppressor of cytokine signaling-3 associated with susceptibility to tuberculosis among Han Taiwanese. Cytokine, 2019, 114, 11-17.	3.2	3
33	ASPM promotes prostate cancer stemness and progression by augmenting Wntâ^Dvl-3â^î2-catenin signaling. Oncogene, 2019, 38, 1340-1353.	5.9	85
34	Elevation of androgen receptor promotes prostate cancer metastasis by induction of epithelialâ€mesenchymal transition and reduction of <scp>KAT</scp> 5. Cancer Science, 2018, 109, 3564-3574.	3.9	29
35	YAP promotes myogenic differentiation via the MEK5â€ERK5 pathway. FASEB Journal, 2017, 31, 2963-2972.	0.5	26
36	Upregulation of CISD2 augments ROS homeostasis and contributes to tumorigenesis and poor prognosis of lung adenocarcinoma. Scientific Reports, 2017, 7, 11893.	3.3	35

Снін-Рім Снии

#	Article	IF	CITATIONS
37	Activation of liver X receptor suppresses angiogenesis <i>via</i> induction of ApoD. FASEB Journal, 2017, 31, 5568-5576.	0.5	17
38	Suppressors of cytokine signaling in tuberculosis. PLoS ONE, 2017, 12, e0176377.	2.5	4
39	Friend or foe: role of E-cadherin in prostate cancer metastasis. Translational Andrology and Urology, 2016, 5, 961-963.	1.4	5
40	CAPE suppresses migration and invasion of prostate cancer cells via activation of non-canonical Wnt signaling. Oncotarget, 2016, 7, 38010-38024.	1.8	47
41	Caffeic Acid Phenethyl Ester Is a Potential Therapeutic Agent for Oral Cancer. International Journal of Molecular Sciences, 2015, 16, 10748-10766.	4.1	73
42	Reduced 5-Methylcytosine Level as a Potential Progression Predictor in Patients with T1 or Non-Invasive Urothelial Carcinoma. International Journal of Molecular Sciences, 2015, 16, 677-690.	4.1	8
43	Androgen receptor inhibits epithelial–mesenchymal transition, migration, and invasion of PC-3 prostate cancer cells. Cancer Letters, 2015, 369, 103-111.	7.2	37
44	Elevation of Soluble Guanylate Cyclase Suppresses Proliferation and Survival of Human Breast Cancer Cells. PLoS ONE, 2015, 10, e0125518.	2.5	35
45	CR3 and Dectin-1 Collaborate in Macrophage Cytokine Response through Association on Lipid Rafts and Activation of Syk-JNK-AP-1 Pathway. PLoS Pathogens, 2015, 11, e1004985.	4.7	85
46	Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1. Oncotarget, 2015, 6, 6684-6707.	1.8	64
47	AKT3 promotes prostate cancer proliferation cells through regulation of Akt, B-Raf & TSC1/TSC2. Oncotarget, 2015, 6, 27097-27112.	1.8	37
48	Androgen Suppresses the Proliferation of Androgen Receptor-Positive Castration-Resistant Prostate Cancer Cells via Inhibition of Cdk2, CyclinA, and Skp2. PLoS ONE, 2014, 9, e109170.	2.5	38
49	Caffeic Acid Phenethyl Ester as a Potential Treatment for Advanced Prostate Cancer Targeting Akt Signaling. International Journal of Molecular Sciences, 2013, 14, 5264-5283.	4.1	25
50	Caffeic acid phenethyl ester as an adjuvant therapy for advanced prostate cancer. Medical Hypotheses, 2013, 80, 617-619.	1.5	18
51	Caffeic Acid Phenethyl Ester Suppresses Proliferation and Survival of TW2.6 Human Oral Cancer Cells via Inhibition of Akt Signaling. International Journal of Molecular Sciences, 2013, 14, 8801-8817.	4.1	57
52	Difference in Protein Expression Profile and Chemotherapy Drugs Response of Different Progression Stages of LNCaP Sublines and Other Human Prostate Cancer Cells. PLoS ONE, 2013, 8, e82625.	2.5	14
53	Cholestane-3β, 5α, 6β-triol Suppresses Proliferation, Migration, and Invasion of Human Prostate Cancer Cells. PLoS ONE, 2013, 8, e65734.	2.5	49
54	Caffeic Acid Phenethyl Ester Suppresses the Proliferation of Human Prostate Cancer Cells through Inhibition of p70S6K and Akt Signaling Networks. Cancer Prevention Research, 2012, 5, 788-797.	1.5	96

Снін-Рім Снии

#	Article	IF	CITATIONS
55	Combined Treatment of Curcumin and Small Molecule Inhibitors Suppresses Proliferation of A549 and H1299 Human Nonâ€Smallâ€Cell Lung Cancer Cells. Phytotherapy Research, 2012, 26, 122-126.	5.8	33
56	Caffeic Acid Phenethyl Ester Causes p21Cip1 Induction, Akt Signaling Reduction, and Growth Inhibition in PC-3 Human Prostate Cancer Cells. PLoS ONE, 2012, 7, e31286.	2.5	74
57	Modulation of liver X receptor signaling as a prevention and therapy for colon cancer. Medical Hypotheses, 2011, 76, 697-699.	1.5	37
58	Androgen suppresses proliferation of castrationâ€resistant LNCaP 104â€R2 prostate cancer cells through androgen receptor, Skp2, and câ€Myc. Cancer Science, 2011, 102, 2022-2028.	3.9	58
59	Androgens as therapy for androgen receptor-positive castration-resistant prostate cancer. Journal of Biomedical Science, 2011, 18, 63.	7.0	67
60	Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nature Methods, 2010, 7, 148-155.	19.0	183
61	Antiproliferative effect of LXR agonists T0901317 and 22(R)-hydroxycholesterol on multiple human cancer cell lines. Anticancer Research, 2010, 30, 3643-8.	1.1	66
62	Suppression of androgen receptor signaling and prostate specific antigen expression by (â~)-epigallocatechin-3-gallate in different progression stages of LNCaP prostate cancer cells. Cancer Letters, 2009, 275, 86-92.	7.2	75
63	Role of androgen receptor in the progression of human prostate tumor cells to androgen independence and insensitivity. Prostate, 2005, 65, 287-298.	2.3	52
64	Androgen Causes Growth Suppression and Reversion of Androgen-Independent Prostate Cancer Xenografts to an Androgen-Stimulated Phenotype in Athymic Mice. Cancer Research, 2005, 65, 2082-2084.	0.9	103