
Carlos C Engler-Pinto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1055731/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization and modeling of fatigue behavior of chopped glass fiber reinforced sheet molding compound (SMC) composite. International Journal of Fatigue, 2022, 156, 106647.	5.7	10
2	The Role of Fibre Length on the Fatigue Failure of Injection-Moulded Composites at Elevated Temperatures under a Range of Axial Loading Conditions. Journal of Composites Science, 2022, 6, 38.	3.0	6
3	Accounting for the microstructure in the prediction of the fatigue life of injection moulded composites for automotive applications. Composite Structures, 2021, 255, 112898.	5.8	8
4	Defect-Based Fatigue Modeling for AlSi10Mg Produced by Laser Powder Bed Fusion Process. Minerals, Metals and Materials Series, 2021, , 75-91.	0.4	0
5	Experimental and computational analysis of bending fatigue failure in chopped carbon fiber chip reinforced composites. Composite Structures, 2021, 275, 114402.	5.8	3
6	Effect of Stress Ratio on Fatigue Behaviour of Non-Crimp Fabric Composites at Room and Elevated Temperatures. Applied Composite Materials, 2020, 27, 575-596.	2.5	3
7	Notch insensitivity in fatigue failure of chopped carbon fiber chip-reinforced composites using experimental and computational analysis. Composite Structures, 2020, 244, 112280.	5.8	15
8	Effects of Surface Roughness and Porosity on Fatigue Behavior of AlSi10Mg Produced by Laser Powder Bed Fusion Process. , 2020, , 229-246.		3
9	Fatigue behaviour of carbon/epoxy Non-Crimp Fabric composites for automotive applications. Procedia Structural Integrity, 2019, 17, 666-673.	0.8	4
10	Effect of fiber orientation distribution on constant fatigue life diagram of chopped carbon fiber chip-reinforced Sheet Molding Compound (SMC) composite. International Journal of Fatigue, 2019, 125, 394-405.	5.7	19
11	Fatigue behavior analysis and multi-scale modelling of chopped carbon fiber chip-reinforced composites under tension-tension loading condition. Composite Structures, 2019, 215, 85-97.	5.8	24
12	Fatigue modeling for carbon/epoxy unidirectional composites under various stress ratios considering size effects. International Journal of Fatigue, 2019, 120, 184-200.	5.7	15
13	The effect of voids on the quasi-static tensile properties of carbon fiber/polymer-laminated composites. Journal of Composite Materials, 2018, 52, 1997-2015.	2.4	10
14	Low Cycle Fatigue Behavior of Heatâ€Resistant Austenitic Cast Steels at 950 °C. Steel Research International, 2018, 89, 1800059.	1.8	0
15	Copper Effect on the Ultrasonic Fatigue Life ofÂA356 Aluminum Alloy Under Variable HumidityÂLevels. , 2018, , .		0
16	Mechanical response and dislocation substructure of a cast austenitic steel under low cycle fatigue at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 703, 422-429.	5.6	12
17	Cylinder Head Design Process to Improve High Cycle Fatigue Performance. , 2017, , .		2
18	<i>In situ</i> characterization of humidity effect on the fatigue damage evolution of a cast aluminium alloy. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 1263-1271.	3.4	1

#	Article	IF	CITATIONS
19	Effect of Constitutive Model on Thermomechanical Fatigue Life Prediction. Procedia Engineering, 2015, 133, 655-668.	1.2	10
20	In situ nonlinear ultrasonic for very high cycle fatigue damage characterization of a cast aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 645, 248-254.	5.6	15
21	The Effect of Metal-Carbide Morphology on the Thermomechanical Fatigue (TMF) Behavior of Cast Austenitic Alloys for Exhaust Manifolds. Procedia Engineering, 2015, 133, 669-680.	1.2	4
22	Hold-Time Effect on Thermo-Mechanical Fatigue Life and its Implications in Durability Analysis of Components and Systems. Materials Performance and Characterization, 2015, 4, 20140032.	0.3	3
23	Numerical modeling of fatigue crack propagation based on the Theory of Critical Distances: Effects of overloads and underloads. Engineering Fracture Mechanics, 2014, 128, 91-102.	4.3	23
24	Statistical relationship between fatigue crack initiator size and fatigue life for a cast aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 580, 71-76.	5.6	7
25	Numerical modeling of fatigue crack propagation based on the theory of critical distances. Engineering Fracture Mechanics, 2013, 114, 151-165.	4.3	24
26	Modeling of fatigue damage under superimposed high-cycle and low-cycle fatigue loading for a cast aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 792-801.	5.6	29
27	Correlation between Scatter in Fatigue Life and Fatigue Crack Initiation Sites in Cast Aluminum Alloys. SAE International Journal of Materials and Manufacturing, 2012, 5, 270-276.	0.3	3
28	Influence of material stress—strain characteristics on thermomechanical fatigue analysis of IN100 superalloy. Materials at High Temperatures, 1995, 13, 47-54.	1.0	6
29	Interaction between oxidation and thermo-mechanical fatigue in IN738LC superalloy — I. Scripta Metallurgica Et Materialia, 1995, 32, 1777-1781.	1.0	27
30	A Comparative Investigation on the High Temperature Fatigue of Three Cast Aluminum Alloys. , 0, , .		7
31	Statistical Approaches Applied to Fatigue Test Data Analysis. , 0, , .		14
32	Residual Stress Analysis of Air-Quenched Engine Aluminum Cylinder Heads. SAE International Journal of Engines, 0, 1, 1015-1019.	0.4	2
33	Aluminum Cylinder Head High Cycle Fatigue Durability Including the Effects of Manufacturing Processes. , 0, , .		4
34	Fatigue Behavior of Stainless Steel Sheet Specimens at Extremely High Temperatures. SAE International Journal of Materials and Manufacturing, 0, 7, 560-566.	0.3	18
35	Cyclic Behavior of an Al-Si-Cu Alloy under Thermo-Mechanical Loading. SAE International Journal of Materials and Manufacturing, 0, 7, 602-608.	0.3	7
36	Comparative Assessment of Elastio-Viscoplastic Models for Thermal Stress Analysis of Automotive Powertrain Component. , 0, , .		2

#	Article	IF	CITATIONS
37	Effect of Temperature Cycle on Thermomechanical Fatigue Life of a High Silicon Molybdenum Ductile Cast Iron. , 0, , .		8
38	Very High Cycle Fatigue of Cast Aluminum Alloys under Variable Humidity Levels. SAE International Journal of Materials and Manufacturing, 0, 8, 444-449.	0.3	3
39	Effect of Humidity on the Very High Cycle Fatigue Behavior of a Cast Aluminum Alloy. SAE International Journal of Materials and Manufacturing, 0, 9, 578-584.	0.3	2
40	Study on Fatigue Behaviors of Porous T300/924 Carbon Fiber Reinforced Polymer Unidirectional Laminates. SAE International Journal of Materials and Manufacturing, 0, 10, 114-122.	0.3	2
41	Development of a Thermal Fatigue Test Bench for Cylinder Head Materials. , 0, , .		2