
Thomas Koellner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10556/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scenarios for Global Biodiversity in the 21st Century. Science, 2010, 330, 1496-1501.	12.6	1,570
2	A mid-term analysis of progress toward international biodiversity targets. Science, 2014, 346, 241-244.	12.6	949
3	The impacts of roads and other infrastructure on mammal and bird populations: A meta-analysis. Biological Conservation, 2010, 143, 1307-1316.	4.1	693
4	A blueprint for mapping and modelling ecosystem services. Ecosystem Services, 2013, 4, 4-14.	5.4	565
5	GLOBIO3: A Framework to Investigate Options for Reducing Global Terrestrial Biodiversity Loss. Ecosystems, 2009, 12, 374-390.	3.4	396
6	Framework for systematic indicator selection to assess effects of land management on ecosystem services. Ecological Indicators, 2012, 21, 110-122.	6.3	354
7	UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. International Journal of Life Cycle Assessment, 2013, 18, 1188-1202.	4.7	275
8	Land use impacts on biodiversity in LCA: a global approach. International Journal of Life Cycle Assessment, 2013, 18, 1216-1230.	4.7	259
9	Approaches to defining a planetary boundary for biodiversity. Global Environmental Change, 2014, 28, 289-297.	7.8	236
10	Toward Meaningful End Points of Biodiversity in Life Cycle Assessment. Environmental Science & Technology, 2011, 45, 70-79.	10.0	173
11	Interregional flows of ecosystem services: Concepts, typology and four cases. Ecosystem Services, 2018, 31, 231-241.	5.4	143
12	Land Use in Life Cycle Assessment: Global Characterization Factors Based on Regional and Global Potential Species Extinction. Environmental Science & Technology, 2013, 47, 9281-9290.	10.0	136
13	Interactions among ecosystem services across Europe: Bagplots and cumulative correlation coefficients reveal synergies, trade-offs, and regional patterns. Ecological Indicators, 2015, 49, 46-52.	6.3	132
14	The Role of Vegetation in Mitigating Urban Land Surface Temperatures: A Case Study of Munich, Germany during the Warm Season. Sustainability, 2015, 7, 4689-4706.	3.2	125
15	Virtual land use and agricultural trade: Estimating environmental and socio-economic impacts. Ecological Economics, 2006, 57, 679-697.	5.7	120
16	Assessment of Land Use Impacts on the Natural Environment. Part 1: An Analytical Framework for Pure Land Occupation and Land Use Change (8 pp). International Journal of Life Cycle Assessment, 2007, 12, 16-23.	4.7	115
17	Quantifying and Mapping Ecosystem Services Supplies and Demands: A Review of Remote Sensing Applications. Environmental Science & Technology, 2012, 46, 8529-8541.	10.0	112
18	Principles for life cycle inventories of land use on a global scale. International Journal of Life Cycle Assessment, 2013, 18, 1203-1215.	4.7	111

#	Article	IF	CITATIONS
19	Future hotspots of terrestrial mammal loss. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2693-2702.	4.0	107
20	An African account of ecosystem service provision: Use, threats and policy options for sustainable livelihoods. Ecosystem Services, 2012, 2, 71-81.	5.4	105
21	Mapping and modelling trade-offs and synergies between grazing intensity and ecosystem services in rangelands using global-scale datasets and models. Global Environmental Change, 2014, 29, 223-234.	7.8	103
22	Land use impacts on freshwater regulation, erosion regulation, and water purification: a spatial approach for a global scale level. International Journal of Life Cycle Assessment, 2013, 18, 1253-1264.	4.7	101
23	Projecting Land-Use Change and Its Consequences for Biodiversity in Northern Thailand. Environmental Management, 2010, 45, 626-639.	2.7	92
24	Principles for sustainability rating of investment funds. Business Strategy and the Environment, 2005, 14, 54-70.	14.3	89
25	Do attitudes toward ecosystem services determine agricultural land use practices? An analysis of farmers' decision-making in a South Korean watershed. Land Use Policy, 2013, 31, 422-429.	5.6	89
26	Species-pool effect potentials (SPEP) as a yardstick to evaluate land-use impacts on biodiversity. Journal of Cleaner Production, 2000, 8, 293-311.	9.3	87
27	Land use impacts on biodiversity in LCA: proposal of characterization factors based on functional diversity. International Journal of Life Cycle Assessment, 2013, 18, 1231-1242.	4.7	86
28	Assessment of land use impacts on the natural environment. International Journal of Life Cycle Assessment, 2008, 13, 32-48.	4.7	86
29	Rarefaction method for assessing plant species diversity on a regional scale. Ecography, 2004, 27, 532-544.	4.5	85
30	Decision-making by farmers regarding ecosystem services: Factors affecting soil conservation efforts in Costa Rica. Land Use Policy, 2010, 27, 1132-1142.	5.6	82
31	Biodiversity, Ecosystem Function, and Investment Risk. BioScience, 2006, 56, 977.	4.9	80
32	The Challenges of Applying Planetary Boundaries as a Basis for Strategic Decision-Making in Companies with Global Supply Chains. Sustainability, 2017, 9, 279.	3.2	78
33	Mapping cultural ecosystem services 2.0 – Potential and shortcomings from unlabeled crowd sourced images. Ecological Indicators, 2019, 96, 505-515.	6.3	77
34	Assessment of land use impacts on the natural environment. International Journal of Life Cycle Assessment, 2008, 13, 32-48.	4.7	74
35	Conventional and organic farming: Soil erosion and conservation potential for row crop cultivation. Geoderma, 2014, 219-220, 89-105.	5.1	74
36	Towards a national set of ecosystem service indicators: Insights from Germany. Ecological Indicators, 2016, 61, 38-48.	6.3	72

#	Article	IF	CITATIONS
37	Pathways for agriculture and forestry to contribute to terrestrial biodiversity conservation: A global scenario-study. Biological Conservation, 2018, 221, 137-150.	4.1	72
38	Modeling land use decisions with Bayesian networks: Spatially explicit analysis of driving forces on land use change. Environmental Modelling and Software, 2014, 52, 222-233.	4.5	69
39	Ecosystem engineer unleashed: Prosopis juliflora threatening ecosystem services?. Regional Environmental Change, 2015, 15, 155-167.	2.9	67
40	Global land use impact assessment on biodiversity and ecosystem services in LCA. International Journal of Life Cycle Assessment, 2013, 18, 1185-1187.	4.7	64
41	Assessment of land use impacts on soil ecological functions: development of spatially differentiated characterization factors within a Canadian context. International Journal of Life Cycle Assessment, 2011, 16, 198-211.	4.7	60
42	Guidance for assessing interregional ecosystem service flows. Ecological Indicators, 2019, 105, 92-106.	6.3	57
43	The relation between the GRI indicators and the financial performance of firms. Progress in Industrial Ecology, 2008, 5, 236.	0.2	56
44	National ecosystem services mapping at multiple scales â¿¿ The German exemplar. Ecological Indicators, 2016, 70, 357-372.	6.3	55
45	Quantifying interregional flows of multiple ecosystem services – A case study for Germany. Global Environmental Change, 2020, 61, 102051.	7.8	54
46	Influence of consumers' socioecological and economic orientations on preferences for wood products with sustainability labels. Forest Policy and Economics, 2006, 8, 239-250.	3.4	52
47	Harmonizing the Assessment of Biodiversity Effects from Land and Water Use within LCA. Environmental Science & Technology, 2015, 49, 3584-3592.	10.0	51
48	High-Resolution Assessment of Land Use Impacts on Biodiversity in Life Cycle Assessment Using Species Habitat Suitability Models. Environmental Science & Technology, 2015, 49, 2237-2244.	10.0	47
49	Environmental Impacts of Conventional and Sustainable Investment Funds Compared Using Input-Output Life-Cycle Assessment. Journal of Industrial Ecology, 2008, 11, 41-60.	5.5	42
50	Weakening the Brazilian legislation for forest conservation has severe impacts for ecosystem services in the Atlantic Southern Forest. Land Use Policy, 2015, 47, 1-11.	5.6	39
51	Do Red Edge and Texture Attributes from High-Resolution Satellite Data Improve Wood Volume Estimation in a Semi-Arid Mountainous Region?. Remote Sensing, 2016, 8, 540.	4.0	37
52	Driving Forces in Archetypical Land-Use Changes in a Mountainous Watershed in East Asia. Land, 2014, 3, 957-980.	2.9	36
53	Assessing resource-use efficiency of land use. Environmental Modelling and Software, 2018, 107, 34-49.	4.5	36
54	The use of agri-environmental measures to address environmental pressures in Germany: Spatial mismatches and options for improvement. Land Use Policy, 2019, 84, 347-362.	5.6	36

#	Article	IF	CITATIONS
55	Why and how much are firms willing to invest in ecosystem services from tropical forests? A comparison of international and Costa Rican firms. Ecological Economics, 2010, 69, 2127-2139.	5.7	34
56	Towards a general relationship between climate change and biodiversity: an example for plant species in Europe. Regional Environmental Change, 2011, 11, 143-150.	2.9	33
57	Using the SWAT model to improve process descriptions and define hydrologic partitioning in South Korea. Hydrology and Earth System Sciences, 2014, 18, 539-557.	4.9	33
58	Land use change and ecosystem services in mountainous watersheds: Predicting the consequences of environmental policies with cellular automata and hydrological modeling. Environmental Modelling and Software, 2019, 122, 103982.	4.5	33
59	A Bayesian network approach to model farmers' crop choice using socio-psychological measurements of ecosystem services. Environmental Modelling and Software, 2014, 57, 227-234.	4.5	31
60	Pay the farmer, or buy the land?—Cost-effectiveness of payments for ecosystem services versus land purchases or easements in Central Kenya. Ecological Economics, 2016, 127, 59-67.	5.7	30
61	An economic analysis of reforestation with a native tree species: the case of Vietnamese farmers. Biodiversity and Conservation, 2014, 23, 811-830.	2.6	28
62	Decision criteria of European and Latin American market actors for tropical forestry projects providing environmental services. Ecological Economics, 2006, 58, 17-36.	5.7	26
63	Factors Influencing Households' Firewood Consumption in the Western Pamirs, Tajikistan. Mountain Research and Development, 2014, 34, 147-156.	1.0	26
64	Spatially explicit life cycle impact assessment for soil erosion from global crop production. Ecosystem Services, 2018, 30, 220-227.	5.4	25
65	Comparing direct land use impacts on biodiversity of conventional and organic milk—based on a Swedish case study. International Journal of Life Cycle Assessment, 2014, 19, 52-68.	4.7	24
66	Assessment and Governance of Sustainable Soil Management. Sustainability, 2018, 10, 4432.	3.2	23
67	Land management implications for ecosystem services in a South African rangeland. Ecological Indicators, 2014, 45, 692-703.	6.3	22
68	Spatial correlation of agri-environmental measures with high levels of ecosystem services. Ecological Indicators, 2018, 84, 364-370.	6.3	22
69	Deriving a per-field land use and land cover map in an agricultural mosaic catchment. Earth System Science Data, 2014, 6, 339-352.	9.9	22
70	Reconstructing the Spatio-Temporal Development of Irrigation Systems in Uzbekistan Using Landsat Time Series. Remote Sensing, 2012, 4, 3972-3994.	4.0	21
71	Regional or global? The question of low-emission food sourcing addressed with spatial optimization modelling. Environmental Modelling and Software, 2016, 82, 128-141.	4.5	21
72	Soil properties along a gradient from hillslopes to the savanna plains in the Lambwe Valley, Kenya. Soil and Tillage Research, 2015, 154, 75-83.	5.6	20

#	Article	IF	CITATIONS
73	Regional Patterns of Ecosystem Services in Cultural Landscapes. Land, 2016, 5, 17.	2.9	20
74	Crop diversity and stability of revenue on farms in Central Europe: An analysis of big data from a comprehensive agricultural census in Bavaria. PLoS ONE, 2018, 13, e0207454.	2.5	20
75	Intergovernmental fiscal transfers to support local conservation action in Europe. Zeitschrift Fur Wirtschaftsgeographie, 2014, 58, 98-114.	1.2	19
76	Conventional, Partially Converted and Environmentally Friendly Farming in South Korea: Profitability and Factors Affecting Farmers' Choice. Sustainability, 2016, 8, 704.	3.2	19
77	Towards mapping and assessing antarctic marine ecosystem services – The weddell sea case study. Ecosystem Services, 2016, 22, 174-192.	5.4	19
78	Flood exposure and settlement expansion since pre-industrial times in 1850 until 2011 in north Bavaria, Germany. Regional Environmental Change, 2015, 15, 183-193.	2.9	18
79	Crop selection under price and yield fluctuation: Analysis of agro-economic time series from South Korea. Agricultural Systems, 2016, 148, 1-11.	6.1	18
80	Ecosystem services from tropical forestry projects – The choice of international market actors. Forest Policy and Economics, 2007, 9, 496-515.	3.4	17
81	A weighted, multi-method approach for accurate basin-wide streamflow estimation in an ungauged watershed. Journal of Hydrology, 2013, 494, 72-82.	5.4	17
82	Assessment of the management of organizations supplying ecosystem services from tropical forests. Global Environmental Change, 2008, 18, 746-757.	7.8	16
83	Synergies and tradeoffs between nitrate leaching and net farm income: The case of nitrogen best management practices in South Korea. Agriculture, Ecosystems and Environment, 2014, 186, 160-169.	5.3	16
84	Transformative optimisation of agricultural land use to meet future food demands. PeerJ, 2013, 1, e188.	2.0	16
85	Disentangling effects of climate and land use on biodiversity and ecosystem services—A multiâ€scale experimental design. Methods in Ecology and Evolution, 2022, 13, 514-527.	5.2	15
86	Analysis of costs and people's willingness to enroll in forest rehabilitation in Gorno Badakhshan, Tajikistan. Forest Policy and Economics, 2013, 37, 75-83.	3.4	14
87	Future projections of biodiversity and ecosystem services in Europe with two integrated assessment models. Regional Environmental Change, 2020, 20, 1.	2.9	14
88	Land use in product life cycles and its consequences for ecosystem quality. International Journal of Life Cycle Assessment, 2002, 7, 130-130.	4.7	13
89	Crop production versus surface-water regulation: assessing tradeoffs for land-use scenarios in the Tat Hamlet Watershed, Vietnam. International Journal of Biodiversity Science, Ecosystem Services & Management, 2011, 7, 231-244.	2.9	13
90	Current pathways towards good forest governance for ecosystem services in the former Soviet republic Tajikistan. Forest Policy and Economics, 2016, 63, 11-19.	3.4	12

#	Article	IF	CITATIONS
91	Towards a <i>National Ecosystem Assessment</i> in Germany: A Plea for a Comprehensive Approach. Gaia, 2017, 26, 27-33.	0.7	8
92	Ecosystem services from (pre-)Alpine grasslands: Matches and mismatches between citizens' perceived suitability and farmers' management considerations. Ecosystem Services, 2021, 49, 101284.	5.4	8
93	Do Consumers of Environmentally Friendly Farming Products in Downstream Areas Have a WTP for Water Quality Protection in Upstream Areas?. Water (Switzerland), 2017, 9, 511.	2.7	7
94	Exploring global interregional food system's sustainability using the functional regions typology. Global Environmental Change, 2021, 68, 102276.	7.8	7
95	Volksbegehren Artenvielfalt: GesetzesĤderungen kĶnnen auch Ėkosystemdienstleistungen in Bayerns Agrarlandschaften stĤken. Gaia, 2021, 30, 106-113.	0.7	7
96	Mapping Fractional Land Use and Land Cover in a Monsoon Region: The Effects of Data Processing Options. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 3941-3956.	4.9	6
97	Plural valuation in space: mapping values of grasslands and their ecosystem services. Ecosystems and People, 2022, 18, 258-274.	3.2	6
98	Over 150 Years of Change: Object-Oriented Analysis of Historical Land Cover in the Main River Catchment, Bavaria/Germany. Remote Sensing, 2020, 12, 4048.	4.0	5
99	Unveiling Undercover Cropland Inside Forests Using Landscape Variables: A Supplement to Remote Sensing Image Classification. PLoS ONE, 2015, 10, e0130079.	2.5	3
100	Corrigendum to: Koellner, T., S. Suh, O. Weber, C. Moser, and R.W. Scholz. 2007. Environmental impacts of conventional and sustainable investment funds compared using inputâ^'output life-cycle assessment.Journal of Industrial Ecology11(3): 41â^'60 Journal of Industrial Ecology, 2008, 12, 628-628.	5.5	0
101	Farmers' and Consumers' Preferences for Drinking Water Quality Improvement through Land Management Practices: The Case Study of the Soyang Watershed in South Korea. Sustainability, 2018, 10. 1419.	3.2	0