Antoni Barrientos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10555875/publications.pdf

Version: 2024-02-01

77 papers 6,398 citations

57758 44 h-index 71685 76 g-index

78 all docs 78 docs citations

78 times ranked 6922 citing authors

#	Article	IF	CITATIONS
1	Coordination of metal center biogenesis in human cytochrome c oxidase. Nature Communications, 2022, 13, .	12.8	28
2	Distinct Roles of Mitochondrial HIGD1A and HIGD2A in Respiratory Complex and Supercomplex Biogenesis. Cell Reports, 2020, 31, 107607.	6.4	49
3	Multiple pathways coordinate assembly of human mitochondrial complex IV and stabilization of respiratory supercomplexes. EMBO Journal, 2020, 39, e103912.	7.8	54
4	Regulation of Mitochondrial Respiratory Chain Complex Levels, Organization, and Function by Arginyltransferase 1. Frontiers in Cell and Developmental Biology, 2020, 8, 603688.	3.7	19
5	HIGD-Driven Regulation of Cytochrome c Oxidase Biogenesis and Function. Cells, 2020, 9, 2620.	4.1	22
6	Respiratory supercomplexes enhance electron transport by decreasing cytochrome <i>c</i> diffusion distance. EMBO Reports, 2020, 21, e51015.	4.5	71
7	The mitoribosome-specific protein mS38 is preferentially required for synthesis of cytochrome c oxidase subunits. Nucleic Acids Research, 2019, 47, 5746-5760.	14.5	18
8	Yeast Mitoribosome Large Subunit Assembly Proceeds by Hierarchical Incorporation of Protein Clusters and Modules on the Inner Membrane. Cell Metabolism, 2018, 27, 645-656.e7.	16.2	53
9	Mitochondrial cytochrome c oxidase biogenesis: Recent developments. Seminars in Cell and Developmental Biology, 2018, 76, 163-178.	5.0	225
10	Mitochondrial ribosome bL34 mutants present diminished translation of cytochrome <i>c</i> oxidase subunits. Cell Biology International, 2018, 42, 630-642.	3.0	7
11	Human COX7A2L Regulates Complex III Biogenesis and Promotes Supercomplex Organization Remodeling without Affecting Mitochondrial Bioenergetics. Cell Reports, 2018, 25, 1786-1799.e4.	6.4	55
12	A <i>> <scp>CMC</scp> 1 </i> â€knockout reveals translationâ€independent control of human mitochondrial complex <scp>IV</scp> biogenesis. EMBO Reports, 2017, 18, 477-494.	4.5	56
13	The DEAD-box helicase Mss116 plays distinct roles in mitochondrial ribogenesis and mRNA-specific translation. Nucleic Acids Research, 2017, 45, 6628-6643.	14.5	53
14	Human mitochondrial cytochrome c oxidase assembly factor COX18 acts transiently as a membrane insertase within the subunit 2 maturation module. Journal of Biological Chemistry, 2017, 292, 7774-7783.	3.4	51
15	Attenuation of polyglutamine-induced toxicity by enhancement of mitochondrial OXPHOS in yeast and fly models of aging. Microbial Cell, 2016, 3, 338-351.	3.2	15
16	Oma1 Links Mitochondrial Protein Quality Control and TOR Signaling To Modulate Physiological Plasticity and Cellular Stress Responses. Molecular and Cellular Biology, 2016, 36, 2300-2312.	2.3	18
17	Mitochondrial Cytochrome <i>c</i> Oxidase Biogenesis Is Regulated by the Redox State of a Heme-Binding Translational Activator. Antioxidants and Redox Signaling, 2016, 24, 281-298.	5.4	19
18	The Human Mitochondrial DEAD-Box Protein DDX28 Resides in RNA Granules and Functions in Mitoribosome Assembly. Cell Reports, 2015, 10, 854-864.	6.4	109

#	Article	IF	CITATIONS
19	Dietary restriction, mitochondrial function and aging: from yeast to humans. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1434-1447.	1.0	111
20	Elongator-dependent modification of cytoplasmic tRNA ^{Lys} _{UUU} is required for mitochondrial function under stress conditions. Nucleic Acids Research, 2015, 43, 8368-8380.	14.5	30
21	Human COX20 cooperates with SCO1 and SCO2 to mature COX2 and promote the assembly of cytochrome c oxidase. Human Molecular Genetics, 2014, 23, 2901-2913.	2.9	82
22	A mitochondrial CO ₂ â€adenylyl cyclaseâ€cAMP signalosome controls yeast normoxic cytochrome <i>c</i> oxidase activity. FASEB Journal, 2014, 28, 4369-4380.	0.5	35
23	I Function, Therefore I Am: Overcoming Skepticism about Mitochondrial Supercomplexes. Cell Metabolism, 2013, 18, 147-149.	16.2	26
24	Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in <i><scp>S</scp>accharomyces cerevisiae</i> . Molecular Microbiology, 2013, 90, 824-840.	2.5	45
25	Mitochondrial Cytochrome c Oxidase Assembly in Health and Human Diseases. , 2013, , 239-259.		3
26	The DEAD Box Protein Mrh4 Functions in the Assembly of the Mitochondrial Large Ribosomal Subunit. Cell Metabolism, 2013, 18, 712-725.	16.2	43
27	Redox and Reactive Oxygen Species Regulation of Mitochondrial Cytochrome <i>c</i> Oxidase Biogenesis. Antioxidants and Redox Signaling, 2013, 19, 1940-1952.	5.4	55
28	Transcriptional Regulation of Yeast Oxidative Phosphorylation Hypoxic Genes by Oxidative Stress. Antioxidants and Redox Signaling, 2013, 19, 1916-1927.	5.4	29
29	hCOA3 Stabilizes Cytochrome c Oxidase 1 (COX1) and Promotes Cytochrome c Oxidase Assembly in Human Mitochondria. Journal of Biological Chemistry, 2013, 288, 8321-8331.	3.4	46
30	NAD+ salvage pathway proteins suppress proteotoxicity in yeast models of neurodegeneration by promoting the clearance of misfolded/oligomerized proteins. Human Molecular Genetics, 2013, 22, 1699-1708.	2.9	42
31	Mitochondrial Complex I Plays an Essential Role in Human Respirasome Assembly. Cell Metabolism, 2012, 15, 324-335.	16.2	234
32	Mitochondrial Respiratory Thresholds Regulate Yeast Chronological Life Span and its Extension by Caloric Restriction. Cell Metabolism, 2012, 16, 55-67.	16.2	156
33	A Heme-Sensing Mechanism in the Translational Regulation of Mitochondrial Cytochrome c Oxidase Biogenesis. Cell Metabolism, 2012, 16, 801-813.	16.2	66
34	Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 883-897.	1.0	202
35	Complementary roles of mitochondrial respiration and ROS signaling on cellular aging and longevity. Aging, 2012, 4, 578-579.	3.1	10
36	Regulation of Yeast Chronological Life Span by TORC1 via Adaptive Mitochondrial ROS Signaling. Cell Metabolism, 2011, 13, 668-678.	16.2	273

#	Article	IF	CITATIONS
37	Quick and reliable assessment of chronological life span in yeast cell populations by flow cytometry. Mechanisms of Ageing and Development, 2011, 132, 315-323.	4.6	45
38	Cox25 Teams Up with Mss51, Ssc1, and Cox14 to Regulate Mitochondrial Cytochrome c Oxidase Subunit 1 Expression and Assembly in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2011, 286, 555-566.	3.4	69
39	The Conserved Mitochondrial Twin Cx9C Protein Cmc2 Is a Cmc1 Homologue Essential for Cytochrome c Oxidase Biogenesis. Journal of Biological Chemistry, 2010, 285, 15088-15099.	3.4	34
40	Suppression of polyglutamineâ€induced cytotoxicity in <i>Saccharomyces cerevisiae</i> by enhancement of mitochondrial biogenesis. FASEB Journal, 2010, 24, 1431-1441.	0.5	43
41	Mss51 and Ssc1 Facilitate Translational Regulation of Cytochrome <i>c</i> Oxidase Biogenesis. Molecular and Cellular Biology, 2010, 30, 245-259.	2.3	72
42	Evaluation of the Mitochondrial Respiratory Chain and Oxidative Phosphorylation System Using Yeast Models of OXPHOS Deficiencies. Current Protocols in Human Genetics, 2009, 63, Unit19.5.	3.5	14
43	Suppression mechanisms of COX assembly defects in yeast and human: Insights into the COX assembly process. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 97-107.	4.1	91
44	Synthesis of cytochrome c oxidase subunit 1 is translationally downregulated in the absence of functional F1F0-ATP synthase. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1776-1786.	4.1	40
45	Mitochondrial copper metabolism and delivery to cytochrome <i>c</i> oxidase. IUBMB Life, 2008, 60, 421-429.	3.4	199
46	Cytochrome <i>c</i> oxidase biogenesis: New levels of regulation. IUBMB Life, 2008, 60, 557-568.	3.4	143
47	Cmc1p Is a Conserved Mitochondrial Twin CX ₉ C Protein Involved in Cytochrome <i>c</i> Oxidase Biogenesis. Molecular and Cellular Biology, 2008, 28, 4354-4364.	2.3	53
48	Bot1p Is Required for Mitochondrial Translation, Respiratory Function, and Normal Cell Morphology in the Fission Yeast <i>Schizosaccharomyces pombe</i> i>Eukaryotic Cell, 2008, 7, 619-629.	3.4	12
49	Transcriptional activators HAP/NF-Y rescue a cytochrome c oxidase defect in yeast and human cells. Human Molecular Genetics, 2008, 17, 775-788.	2.9	45
50	Ischemic Preconditioning Targets the Respiration of Synaptic Mitochondria via Protein Kinase CÎμ. Journal of Neuroscience, 2008, 28, 4172-4182.	3.6	104
51	In Vivo Labeling and Analysis of Mitochondrial Translation Products in Budding and in Fission Yeasts. Methods in Molecular Biology, 2008, 457, 113-124.	0.9	20
52	Exploring Protein-Protein Interactions Involving Newly Synthesized Mitochondrial DNA-Encoded Proteins. Methods in Molecular Biology, 2008, 457, 125-139.	0.9	7
53	Aberrant Translation of CytochromecOxidase Subunit 1 mRNA Species in the Absence of Mss51p in the YeastSaccharomyces cerevisiae. Molecular Biology of the Cell, 2007, 18, 523-535.	2.1	54
54	Role of Cytochrome c in Apoptosis: Increased Sensitivity to Tumor Necrosis Factor Alpha Is Associated with Respiratory Defects but Not with Lack of Cytochrome c Release. Molecular and Cellular Biology, 2007, 27, 1771-1783.	2.3	54

#	Article	IF	CITATIONS
55	<i>SIT4</i> regulation of Mig1pâ€mediated catabolite repression in <i>Saccharomyces cerevisiae</i> Letters, 2007, 581, 5658-5663.	2.8	16
56	Assembly of mitochondrial cytochromec-oxidase, a complicated and highly regulated cellular process. American Journal of Physiology - Cell Physiology, 2006, 291, C1129-C1147.	4.6	214
57	Cytotoxicity of a mutant huntingtin fragment in yeast involves early alterations in mitochondrial OXPHOS complexes II and III. Human Molecular Genetics, 2006, 15, 3063-3081.	2.9	129
58	Mss51p and Cox14p jointly regulate mitochondrial Cox1p expression in Saccharomyces cerevisiae. EMBO Journal, 2004, 23, 3472-3482.	7.8	179
59	Defects in the biosynthesis of mitochondrial heme c and heme a in yeast and mammals. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1659, 153-159.	1.0	47
60	COX16 Encodes a Novel Protein Required for the Assembly of Cytochrome Oxidase in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2003, 278, 3770-3775.	3.4	35
61	MTG1 Codes for a Conserved Protein Required for Mitochondrial Translation. Molecular Biology of the Cell, 2003, 14, 2292-2302.	2.1	64
62	Cytochrome Oxidase Assembly Does Not Require Catalytically Active Cytochrome c. Journal of Biological Chemistry, 2003, 278, 8881-8887.	3.4	34
63	Yeast Dihydroxybutanone Phosphate Synthase, an Enzyme of the Riboflavin Biosynthetic Pathway, Has a Second Unrelated Function in Expression of Mitochondrial Respiration. Journal of Biological Chemistry, 2003, 278, 14698-14703.	3.4	16
64	Yeast Models of Human Mitochondrial Diseases. IUBMB Life, 2003, 55, 83-95.	3.4	65
65	In vivo and in organello assessment of OXPHOS activities. Methods, 2002, 26, 307-316.	3.8	222
66	Cytochrome oxidase in health and disease. Gene, 2002, 286, 53-63.	2.2	175
67	Shy1p is necessary for full expression of mitochondrial COX1 in the yeast model of Leigh's syndrome. EMBO Journal, 2002, 21, 43-52.	7.8	149
68	Transmitochondrial technology in animal cells. Methods in Cell Biology, 2001, 65, 397-412.	1.1	17
69	A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nature Genetics, 2001, 29, 57-60.	21.4	297
70	In Vivo Regulation of Oxidative Phosphorylation in Cells Harboring a Stop-codon Mutation in Mitochondrial DNA-encoded Cytochrome c Oxidase Subunit I. Journal of Biological Chemistry, 2001, 276, 46925-46932.	3.4	66
71	Functional Constraints of Nuclear-Mitochondrial DNA Interactions in Xenomitochondrial Rodent Cell Lines. Journal of Biological Chemistry, 2000, 275, 31520-31527.	3.4	103
72	Cytochrome c Oxidase Assembly in Primates is Sensitive to Small Evolutionary Variations in Amino Acid Sequence. Molecular Biology and Evolution, 2000, 17, 1508-1519.	8.9	44

ANTONI BARRIENTOS

#	Article	IF	CITATIONS
73	A mutation in the human heme A:farnesyltransferase gene (COX10) causes cytochrome c oxidase deficiency. Human Molecular Genetics, 2000, 9, 1245-1249.	2.9	261
74	Titrating the Effects of Mitochondrial Complex I Impairment in the Cell Physiology. Journal of Biological Chemistry, 1999, 274, 16188-16197.	3.4	342
75	Human Xenomitochondrial Cybrids. Journal of Biological Chemistry, 1998, 273, 14210-14217.	3.4	174
76	Reduced steady-state levels of mitochondrial RNA and increased mitochondrial DNA amount in human brain with aging. Molecular Brain Research, 1997, 52, 284-289.	2.3	140
77	Absence of Relationship between the Level of Electron Transport Chain Activities and Aging in Human Skeletal Muscle. Biochemical and Biophysical Research Communications, 1996, 229, 536-539.	2.1	97