Xiaodan Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10555541/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large scale synthesis of self-assembled shuttlecock-shaped silica nanoparticles with minimized drag as advanced catalytic nanomotors. Chemical Engineering Journal, 2021, 417, 127971.	12.7	9
2	Calcium-Doped Silica Nanoparticles Mixed with Phosphate-Doped Silica Nanoparticles for Rapid and Stable Occlusion of Dentin Tubules. ACS Applied Nano Materials, 2021, 4, 8761-8769.	5.0	4
3	A General Approach to Direct Growth of Oriented Metal–Organic Framework Nanosheets on Reduced Graphene Oxides. Advanced Science, 2020, 7, 1901480.	11.2	25
4	Nitrogen-Doped Mesoporous Carbon Microspheres by Spray Drying-Vapor Deposition for High-Performance Supercapacitor. Frontiers in Chemistry, 2020, 8, 592904.	3.6	6
5	Modulating the Void Space of Nitrogenâ€Doped Hollow Mesoporous Carbon Spheres for Lithium‣ulfur Batteries. ChemNanoMat, 2020, 6, 925-929.	2.8	7
6	Modulating Ion Diffusivity and Electrode Conductivity of Carbon Nanotube@Mesoporous Carbon Fibers for High Performance Aluminum–Selenium Batteries. Small, 2019, 15, e1904310.	10.0	33
7	Designed synthesis of organosilica nanoparticles for enzymatic biodiesel production. Materials Chemistry Frontiers, 2018, 2, 1334-1342.	5.9	31
8	Hollow Mesoporous Carbon Nanocubes: Rigidâ€Interfaceâ€Induced Outward Contraction of Metalâ€Organic Frameworks. Advanced Functional Materials, 2018, 28, 1705253.	14.9	100
9	Tailored Yolk–Shell Sn@C Nanoboxes for Highâ€₽erformance Lithium Storage. Advanced Functional Materials, 2017, 27, 1606023.	14.9	173
10	Single-Layered Mesoporous Carbon Sandwiched Graphene Nanosheets for High Performance Ionic Liquid Supercapacitors. Journal of Physical Chemistry C, 2017, 121, 23947-23954.	3.1	12
11	Free-standing monolithic nanoporous graphene foam as a high performance aluminum-ion battery cathode. Journal of Materials Chemistry A, 2017, 5, 19416-19421.	10.3	68
12	Mg(OH) ₂ –MgO@reduced graphene oxide nanocomposites: the roles of composition and nanostructure in arsenite sorption. Journal of Materials Chemistry A, 2017, 5, 24484-24492.	10.3	26
13	Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis. Nano Research, 2017, 10, 605-617.	10.4	63
14	Rattle-type magnetic mesoporous hollow carbon as a high-performance and reusable adsorbent for water treatment. Chemosphere, 2017, 166, 109-117.	8.2	24
15	Surfactant-Free Assembly of Mesoporous Carbon Hollow Spheres with Large Tunable Pore Sizes. ACS Nano, 2016, 10, 4579-4586.	14.6	374
16	Mesoporous Magnesium Oxide Hollow Spheres as Superior Arsenite Adsorbent: Synthesis and Adsorption Behavior. ACS Applied Materials & Interfaces, 2016, 8, 25306-25312.	8.0	69
17	Kinetically Controlled Assembly of Nitrogenâ€Doped Invaginated Carbon Nanospheres with Tunable Mesopores. Chemistry - A European Journal, 2016, 22, 14962-14967	3.3	21
18	Encapsulation of selenium sulfide in double-layered hollow carbon spheres as advanced electrode material for lithium storage. Nano Research, 2016, 9, 3725-3734.	10.4	45

XIAODAN HUANG

#	Article	IF	CITATIONS
19	Coreâ€Cone Structured Monodispersed Mesoporous Silica Nanoparticles with Ultraâ€large Cavity for Protein Delivery. Small, 2015, 11, 5949-5955.	10.0	140
20	Encapsulation of α-Fe ₂ O ₃ nanoparticles in graphitic carbon microspheres as high-performance anode materials for lithium-ion batteries. Nanoscale, 2015, 7, 3270-3275.	5.6	82
21	Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium–sulfur batteries with long cycle life. Nano Energy, 2015, 16, 268-280.	16.0	132
22	Synthesis of Magnesium Oxide Hierarchical Microspheres: A Dual-Functional Material for Water Remediation. ACS Applied Materials & amp; Interfaces, 2015, 7, 21278-21286.	8.0	124
23	Selfâ€Assembling Synthesis of Freeâ€standing Nanoporous Graphene–Transitionâ€Metal Oxide Flexible Electrodes for Highâ€Performance Lithiumâ€Ion Batteries and Supercapacitors. Chemistry - an Asian Journal, 2014, 9, 206-211.	3.3	62
24	3D Hyperbranched Hollow Carbon Nanorod Architectures for Highâ€Performance Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2014, 4, 1301761.	19.5	154
25	Porous Graphene Nanoarchitectures: An Efficient Catalyst for Low Charge-Overpotential, Long Life, and High Capacity Lithium–Oxygen Batteries. Nano Letters, 2014, 14, 3145-3152.	9.1	329
26	Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Research, 2014, 7, 85-94.	10.4	163
27	Soft-template synthesis of 3D porous graphene foams with tunable architectures for lithium–O ₂ batteries and oil adsorption applications. Journal of Materials Chemistry A, 2014, 2, 7973-7979.	10.3	108
28	Multi-shelled hollow carbon nanospheres for lithium–sulfur batteries with superior performances. Journal of Materials Chemistry A, 2014, 2, 16199-16207.	10.3	116
29	Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production. Scientific Reports, 2014, 4, 7557.	3.3	93
30	Mesoporous graphene paper immobilised sulfur as a flexible electrode for lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 13484.	10.3	103
31	Self-assembly of monodispersed silica nano-spheres with a closed-pore mesostructure. Journal of Materials Chemistry, 2012, 22, 11523.	6.7	18
32	Functional Nanoporous Graphene Foams with Controlled Pore Sizes. Advanced Materials, 2012, 24, 4419-4423.	21.0	350
33	A graphene modified anode to improve the performance of microbial fuel cells. Journal of Power Sources, 2011, 196, 5402-5407.	7.8	335
34	Graphene Nanosheets Modified Glassy Carbon Electrode as a Highly Sensitive and Selective Voltammetric Sensor for Rutin. Electroanalysis, 2010, 22, 2399-2406.	2.9	45