Om V Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10554132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 377-391.	1.4	962
2	Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends in Biotechnology, 2002, 20, 243-248.	4.9	952
3	Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bioâ€products. Journal of Chemical Technology and Biotechnology, 2012, 87, 11-20.	1.6	301
4	Detoxification of Lignocellulose Hydrolysates: Biochemical and Metabolic Engineering Toward White Biotechnology. Bioenergy Research, 2013, 6, 388-401.	2.2	174
5	Biotechnological production of gluconic acid: future implications. Applied Microbiology and Biotechnology, 2007, 75, 713-722.	1.7	154
6	Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of †Biofuel'. Applied Microbiology and Biotechnology, 2011, 89, 1289-1303.	1.7	145
7	Radiation-resistant extremophiles and their potential in biotechnology and therapeutics. Applied Microbiology and Biotechnology, 2013, 97, 993-1004.	1.7	120
8	Bioremediation: a genuine technology to remediate radionuclides from the environment. Microbial Biotechnology, 2013, 6, 349-360.	2.0	99
9	Genetically modified crops: success, safety assessment, and public concern. Applied Microbiology and Biotechnology, 2006, 71, 598-607.	1.7	78
10	Proteomics and metabolomics: The molecular make-up of toxic aromatic pollutant bioremediation. Proteomics, 2006, 6, 5481-5492.	1.3	73
11	Bioconversion of novel substrate Saccharum spontaneum, a weedy material, into ethanol by Pichia stipitis NCIM3498. Bioresource Technology, 2011, 102, 1709-1714.	4.8	72
12	Transcriptomics, proteomics and interactomics: unique approaches to track the insights of bioremediation. Briefings in Functional Genomics & Proteomics, 2006, 4, 355-362.	3.8	63
13	Chemical Rescue of c:workingBhatia,08-augasmbuploadj-elbm0001-0142F508-CFTR Mimics Genetic Repair in Cystic Fibrosis Bronchial Epithelial Cells. Molecular and Cellular Proteomics, 2008, 7, 1099-1110.	2.5	58
14	Pharmacoproteomics of 4-Phenylbutyrate-Treated IB3-1 Cystic Fibrosis Bronchial Epithelial Cells. Journal of Proteome Research, 2006, 5, 562-571.	1.8	54
15	Key drivers influencing the commercialization of ethanol-based biorefineries. Journal of Commercial Biotechnology, 2010, 16, 239-257.	0.2	52
16	Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae. Biotechnology for Biofuels, 2013, 6, 4.	6.2	49
17	Proteome of synaptosomeâ€associated proteins in spinal cord dorsal horn after peripheral nerve injury. Proteomics, 2009, 9, 1241-1253.	1.3	43
18	Bioconversion of Saccharum spontaneum (wild sugarcane) hemicellulosic hydrolysate into ethanol by mono and co-cultures of Pichia stipitis NCIM3498 and thermotolerant Saccharomyces cerevisiae-VS3. New Biotechnology, 2011, 28, 593-599.	2.4	41

Ом V Singh

#	Article	IF	CITATIONS
19	Gluconic acid production under varying fermentation conditions byAspergillus niger. Journal of Chemical Technology and Biotechnology, 2003, 78, 208-212.	1.6	39
20	Extremophiles as sources of inorganic bio-nanoparticles. World Journal of Microbiology and Biotechnology, 2016, 32, 156.	1.7	35
21	Antibiotrophs: The complexity of antibiotic-subsisting and antibiotic-resistant microorganisms. Critical Reviews in Microbiology, 2016, 42, 17-30.	2.7	32
22	A New Route to 2-Aryl-4-quonolonesviaThallium(III)p-Tolylsulphonate Mediated Oxidation of 2-Aryl-1,2,3,4-tetrahydro-4-quinolones. Synthetic Communications, 1993, 23, 277-283.	1.1	31
23	Bioremediation of Radionuclides: Emerging Technologies. OMICS A Journal of Integrative Biology, 2007, 11, 295-304.	1.0	31
24	Oxidative 1,2-aryl rearrangement in flavanones using thallium(III) -tolylsulphonate (TTS)= A new useful route to isoflavones. Tetrahedron Letters, 1990, 31, 2747-2750.	0.7	27
25	Dehydrogenation of flavanones to flavones using thallium(III) acetate(TTA). Tetrahedron Letters, 1990, 31, 1459-1462.	0.7	27
26	Proteomics: a strategy to understand the novel targets in protein misfolding and cancer therapy. Expert Review of Proteomics, 2010, 7, 613-623.	1.3	27
27	Biotechnological Applications of Hemicellulosic Derived Sugars: State-of-the-Art. , 2010, , 63-81.		22
28	Oxidation of 2-Aryl-1,2,3,4-tetrahydro-4-quinolones: A Novel Entry for the Synthesis of 2- and 3-Arylquinoline Alkaloids. Synlett, 1992, 1992, 751-752.	1.0	21
29	Manganese(III) Acetate Mediated Oxidation of Flavanones: A Facile Synthesis of Flavones. Synthetic Communications, 2005, 35, 2723-2728.	1.1	20
30	Human microbiome versus food-borne pathogens: friend or foe. Applied Microbiology and Biotechnology, 2016, 100, 4845-4863.	1.7	19
31	Hypervalent iodine oxidation of aryl methyl ketones: A convenient route to methyl α-methoxyarylacetatos. Tetrahedron Letters, 1990, 31, 3055-3058.	0.7	17
32	Oxidative rearrangement of 2-spirochromanones: a novel route for the synthesis of tetrahydroxanthones. Tetrahedron Letters, 1991, 32, 5619-5620.	0.7	17
33	Oxidation of Chromanones and 2-Spirochromanones with [Hydroxy(tosyloxy)iodo]benzene in Acetonitrile Under Reflux as well as Ultrasound: A Convenient Route for the Synthesis of Chromones, Tetrahydroxanthones, and Their Higher Homologues. Synthetic Communications, 1994, 24, 2637-2644.	1.1	17
34	Ultravioletâ€radiationâ€resistant isolates revealed celluloseâ€degrading species of <i>Cellulosimicrobium cellulans</i> (<scp>UVP</scp> 1) and <i>Bacillus pumilus</i> (<scp>UVP</scp> 4). Biotechnology and Applied Biochemistry, 2012, 59, 395-404.	1.4	17
35	Regioselective Synthesis of Methyl 2,3-Dihydro-2-aryl Benzofuran-3-Carboxylates Using Thallium(III) Nitrate. Synthetic Communications, 1993, 23, 585-590.	1.1	15
36	Emergence of antibiotic-resistant extremophiles (AREs). Extremophiles, 2012, 16, 697-713.	0.9	12

Om V Singh

#	Article	IF	CITATIONS
37	Extremophiles and Their Applications in Medical Processes. SpringerBriefs in Microbiology, 2015, , .	0.1	12
38	Thallium(III) p-Tosylate Mediated Oxidative 2,3-Aryl Rearrangement: A New Useful Route to Ipriflavone and Its Analogs. Synthetic Communications, 2008, 38, 3875-3883.	1.1	11
39	Emergence of Antibiotic-Producing Microorganisms in Residential Versus Recreational Microenvironments. British Microbiology Research Journal, 2013, 3, 280-294.	0.2	11
40	Spirocyclic sulfonamides with carbonic anhydrase inhibitory and anti-neuropathic pain activity. Bioorganic Chemistry, 2019, 92, 103210.	2.0	11
41	Oxidation of Flavonols <i>Via</i> Oxythallation Using Thallium(III) Acetate(TTA) and Thallium(III) Nitrate(TTN) in Methanol. Synthetic Communications, 1990, 20, 2401-2408.	1.1	10
42	Using Genomics to Develop Novel Antibacterial Therapeutics. Critical Reviews in Microbiology, 2010, 36, 340-348.	2.7	10
43	A CONVENIENT METHOD FOR THE SYNTHESIS OF FLAVANONES BY THE SELECTIVE OXIDATION OF FLAVAN-4-OLS WITH HYPERVALENT IODINE. Organic Preparations and Procedures International, 1993, 25, 693-695.	0.6	9
44	Thallium(III) Salts Mediated Oxidative Cyclization of Arenecarbaldehyde Benzothiazol-2-ylhydrazones to Bridged Head Nitrogen Heterocycles. Synthetic Communications, 1994, 24, 2627-2635.	1.1	9
45	Microbial occurrence and antibiotic resistance in ready-to-go food items. Journal of Food Science and Technology, 2018, 55, 2600-2609.	1.4	9
46	Medical Device Sterilization and Reprocessing in the Era of Multidrug-Resistant (MDR) Bacteria: Issues and Regulatory Concepts. Frontiers in Medical Technology, 2020, 2, 587352.	1.3	8
47	Implementation of nanoparticles in therapeutic radiation oncology. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	6
48	Modulated gluconic acid production from immobilized cells of <i>Aspergillus niger</i> ORSâ€4.410 utilizing grape must. Journal of Chemical Technology and Biotechnology, 2008, 83, 780-787.	1.6	5
49	Thallium(III) Nitrate Mediated Ring Contraction of 2â€Arylâ€1,2,3,4â€ŧetrahydroâ€4â€quinolones: Stereoselective Synthesis of trans Methyl 2â€Arylâ€2,3â€dihydroindolâ€3 arboxylates. Synthetic Communications, 2006, 36, 943-950.	1.1	4
50	Integrating genomics and proteomics-oriented biomarkers to comprehend lung cancer. Expert Opinion on Medical Diagnostics, 2009, 3, 167-180.	1.6	4
51	Regulation and Safety Assessment of Genetically Engineered Food. Studies in Ethics, Law, and Technology, 2010, 4, .	0.3	4
52	Applications of proteomic technologies for understanding the premature proteolysis of CFTR. Expert Review of Proteomics, 2010, 7, 473-486.	1.3	4
53	Two-Dimensional Gel Electrophoresis: Discovering Neuropathic Pain-Associated Synaptic Biomarkers in Spinal Cord Dorsal Horn. Methods in Molecular Biology, 2012, 851, 47-63.	0.4	4
54	Integrating biological processes to facilitate the generation of â€~Biofuel'. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 291-292.	1.4	3

Ом V Singh

#	Article	IF	CITATIONS
55	Protein-misfolding diseases and the paradigm of proteomics-based therapeutic targets. Expert Review of Proteomics, 2010, 7, 463-464.	1.3	3
56	Selective inhibition of Helicobacter pylori methionine aminopeptidase by azaindole hydroxamic acid derivatives: Design, synthesis, in vitro biochemical and structural studies. Bioorganic Chemistry, 2021, 115, 105185.	2.0	3
57	Oxidation of Flavonols Using Lead(IV) Acetate in Acidic Methanol. Synthetic Communications, 1992, 22, 1333-1337.	1.1	2
58	Integrating "-Omics―into Biological Processes and Modeling for Bioremediation. OMICS A Journal of Integrative Biology, 2007, 11, 231-232.	1.0	2
59	Biotechnological Advances in Lignocellulosic Ethanol Production. , 2018, , 57-82.		2
60	Extracellular Synthesis and Characterization of Silver Nanoparticles from Alkaliphilic <i>Pseudomonas</i> sp Journal of Nanoscience and Nanotechnology, 2020, 20, 1567-1577.	0.9	2
61	Synthetic immunosurveillance systems: Nanodevices to monitor physiological events. Biosensors and Bioelectronics, 2014, 61, 152-164.	5.3	0
62	Thallium(III) p â€ŧosylateâ€mediated oxidative [1,2] rearrangement of 2â€naphthyl and 2â€heteroarylchromanones. Journal of Heterocyclic Chemistry, 2022, 59, 172.	1.4	0
63	Multiple Molecular Chaperoneâ€mediated Pharmacologic Rescue of Δ F508â€CFTR from ERAD. FASEB Journal, 2007, 21, A420.	0.2	0
64	Two-Dimensional Gel Electrophoresis: Discovering Biomolecules for Environmental Bioremediation. Methods in Molecular Biology, 2010, 599, 141-156.	0.4	0
65	Implications of Nanotechnology into Next Generation Biofuel Industry. Advances in Chemical and Materials Engineering Book Series, 2015, , 452-476.	0.2	0
66	Commensals and Foodborne Pathogens can Arbitrate Epithelial-carcinogenesis. British Microbiology Research Journal, 2016, 15, 1-11.	0.2	0
67	Novel synthesis of rotenoid, pongarotene, by oxidative rearrangement using thallium(III) <i>p</i> -tosylate. Synthetic Communications, 0, , 1-8.	1.1	0