Zheng Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10554056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amorphous Bimetallic Oxide–Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn–Air Batteries. Advanced Materials, 2017, 29, 1701410.	21.0	243
2	Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects. Energy and Environmental Science, 2020, 13, 3185-3206.	30.8	225
3	Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc–Air Batteries. Small, 2018, 14, e1801929.	10.0	192
4	Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion. Energy Storage Materials, 2020, 25, 585-612.	18.0	181
5	Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 764-774.	10.3	123
6	Cationâ€Vacancyâ€Enriched Nickel Phosphide for Efficient Electrosynthesis of Hydrogen Peroxides. Advanced Materials, 2022, 34, e2106541.	21.0	123
7	Make it stereoscopic: interfacial design for full-temperature adaptive flexible zinc–air batteries. Energy and Environmental Science, 2021, 14, 4926-4935.	30.8	108
8	Hydrogen evolution reaction activity of nickel phosphide is highly sensitive to electrolyte pH. Journal of Materials Chemistry A, 2017, 5, 20390-20397.	10.3	98
9	Rechargeable zinc-air batteries with neutral electrolytes: Recent advances, challenges, and prospects. EnergyChem, 2021, 3, 100055.	19.1	59
10	Metal-free bifunctional carbon electrocatalysts derived from zeolitic imidazolate frameworks for efficient water splitting. Materials Chemistry Frontiers, 2018, 2, 102-111.	5.9	57
11	Big to Small: Ultrafine Mo ₂ C Particles Derived from Giant Polyoxomolybdate Clusters for Hydrogen Evolution Reaction. Small, 2019, 15, e1900358.	10.0	53
12	Milk powder-derived bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. Energy Storage Materials, 2018, 11, 134-143.	18.0	45
13	Ultralow-platinum-loading nanocarbon hybrids for highly sensitive hydrogen peroxide detection. Sensors and Actuators B: Chemical, 2019, 283, 304-311.	7.8	27
14	Nanostructured hexaazatrinaphthalene based polymers for advanced energy conversion and storage. Chemical Engineering Journal, 2022, 427, 130995.	12.7	16
15	A CO2-Switchable Polymer Surfactant Copolymerized with DMAEMA and AM as a Heavy Oil Emulsifier. Journal of Dispersion Science and Technology, 2016, 37, 1200-1207.	2.4	10
16	Carbon dioxide switchable polymer surfactant copolymerized with 2â€{dimethylamino)ethyl methacrylate and butyl methacrylate as a heavyâ€oil emulsifier. Journal of Applied Polymer Science, 2015, 132, .	2.6	7