Jonathan Chun Fung Lau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1055362/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews Materials, 2020, 5, 5-19.	23.3	1,138
2	Conformal Ultrathin Film Metal–Organic Framework Analogues: Characterization of Growth, Porosity, and Electronic Transport. Chemistry of Materials, 2019, 31, 8977-8986.	3.2	11
3	Thermally Robust Non-Wetting Ni-PTFE Electrodeposited Nanocomposite. Nanomaterials, 2019, 9, 2.	1.9	25
4	Application of Poly(3-hexylthiophene-2,5-diyl) as a Protective Coating for High Rate Cathode Materials. Chemistry of Materials, 2018, 30, 2589-2599.	3.2	47
5	Synthesis and Properties of a Photopatternable Lithiumâ€lon Conducting Solid Electrolyte. Advanced Materials, 2018, 30, 1703772.	11.1	19
6	Growth Temperature and Electrochemical Performance in Vapor-Deposited Poly(3,4-ethylenedioxythiophene) Thin Films for High-Rate Electrochemical Energy Storage. ACS Applied Energy Materials, 2018, 1, 7093-7105.	2.5	22
7	A Metal–Organic Framework with Tetrahedral Aluminate Sites as a Singleâ€ion Li + Solid Electrolyte. Angewandte Chemie, 2018, 130, 16925-16929.	1.6	8
8	A Metal–Organic Framework with Tetrahedral Aluminate Sites as a Singleâ€ion Li ⁺ Solid Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 16683-16687.	7.2	65
9	Sulfide Solid Electrolytes for Lithium Battery Applications. Advanced Energy Materials, 2018, 8, 1800933.	10.2	407
10	Monolithic Flexible Supercapacitors Integrated into Single Sheets of Paper and Membrane via Vapor Printing. Advanced Materials, 2017, 29, 1606091.	11.1	55
11	Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science, 2017, 356, 599-604.	6.0	1,229
12	Wear stability of superhydrophobic nano Ni-PTFE electrodeposits. Wear, 2017, 374-375, 1-4.	1.5	30
13	iCVD Cyclic Polysiloxane and Polysilazane as Nanoscale Thin-Film Electrolyte: Synthesis and Properties. Macromolecular Rapid Communications, 2016, 37, 446-452.	2.0	28
14	Nanoscale, conformal polysiloxane thin film electrolytes for three-dimensional battery architectures. Materials Horizons, 2015, 2, 309-314.	6.4	34
15	Scaled carbon-ionogel supercapacitors for electronic circuits. , 2014, , .		1