Gary A Steele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10553020/publications.pdf

Version: 2024-02-01

136950 161849 12,471 54 32 54 h-index citations g-index papers 55 55 55 15432 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors. Nano Letters, 2014, 14, 3347-3352.	9.1	1,510
2	Isolation and characterization of few-layer black phosphorus. 2D Materials, 2014, 1, 025001.	4.4	1,411
3	Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Materials, 2014, 1, 011002.	4.4	1,375
4	Local Strain Engineering in Atomically Thin MoS ₂ . Nano Letters, 2013, 13, 5361-5366.	9.1	1,041
5	Elastic Properties of Freely Suspended MoS ₂ Nanosheets. Advanced Materials, 2012, 24, 772-775.	21.0	905
6	Environmental instability of few-layer black phosphorus. 2D Materials, 2015, 2, 011002.	4.4	818
7	Photocurrent generation with two-dimensional van der Waals semiconductors. Chemical Society Reviews, 2015, 44, 3691-3718.	38.1	802
8	Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nature Communications, 2014, 5, 4651.	12.8	643
9	Large and Tunable Photothermoelectric Effect in Single-Layer MoS ₂ . Nano Letters, 2013, 13, 358-363.	9.1	566
10	The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Research, 2014, 7, 561-571.	10.4	497
11	Carbon Nanotubes as Ultrahigh Quality Factor Mechanical Resonators. Nano Letters, 2009, 9, 2547-2552.	9.1	322
12	Quantum transport in carbon nanotubes. Reviews of Modern Physics, 2015, 87, 703-764.	45.6	292
13	Photovoltaic and Photothermoelectric Effect in a Double-Gated WSe ₂ Device. Nano Letters, 2014, 14, 5846-5852.	9.1	232
14	Single‣ayer MoS ₂ Mechanical Resonators. Advanced Materials, 2013, 25, 6719-6723.	21.0	201
15	Ultrahigh Photoresponse of Fewâ€Layer TiS ₃ Nanoribbon Transistors. Advanced Optical Materials, 2014, 2, 641-645.	7.3	189
16	Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Materials, 2015, 2, 015006.	4.4	149
17	Mechanics of freelyâ€suspended ultrathin layered materials. Annalen Der Physik, 2015, 527, 27-44.	2.4	145
18	Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2. Nanoscale Research Letters, 2012, 7, 233.	5.7	134

#	Article	lF	Citations
19	Valley–spin blockade and spin resonance in carbon nanotubes. Nature Nanotechnology, 2012, 7, 630-634.	31.5	103
20	A High Quality Factor Carbon Nanotube Mechanical Resonator at 39 GHz. Nano Letters, 2012, 12, 193-197.	9.1	101
21	Mechanical properties of freely suspended atomically thin dielectric layers of mica. Nano Research, 2012, 5, 550-557.	10.4	87
22	Gate-tunable diode and photovoltaic effect in an organic–2D layered material p–n junction. Nanoscale, 2015, 7, 15442-15449.	5.6	84
23	Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity. Nature Communications, 2015, 6, 8491.	12.8	74
24	Folded MoS2 layers with reduced interlayer coupling. Nano Research, 2014, 7, 572-578.	10.4	71
25	Multi-mode ultra-strong coupling in circuit quantum electrodynamics. Npj Quantum Information, 2017, 3, .	6.7	69
26	Fast and reliable identification of atomically thin layers of TaSe2 crystals. Nano Research, 2013, 6, 191-199.	10.4	62
27	Strong and tunable mode coupling in carbon nanotube resonators. Physical Review B, 2012, 86, .	3.2	59
28	Silicon nitride membrane resonators at millikelvin temperatures with quality factors exceeding 108. Applied Physics Letters, 2015, 107, 263501.	3.3	44
29	A ballistic graphene superconducting microwave circuit. Nature Communications, 2018, 9, 4069.	12.8	42
30	Observation of decoherence in a carbon nanotube mechanical resonator. Nature Communications, 2014, 5, 5819.	12.8	38
31	Probing Optical Transitions in Individual Carbon Nanotubes Using Polarized Photocurrent Spectroscopy. Nano Letters, 2012, 12, 5649-5653.	9.1	35
32	Molybdenum-rhenium alloy based high-Q superconducting microwave resonators. Applied Physics Letters, 2014, 105, 222601.	3.3	35
33	Negative nonlinear damping of a multilayer graphene mechanical resonator. Physical Review B, 2016, 93, .	3.2	33
34	Observation and stabilization of photonic Fock states in a hot radio-frequency resonator. Science, 2019, 363, 1072-1075.	12.6	31
35	High-quality-factor tantalum oxide nanomechanical resonators by laser oxidation of TaSe2. Nano Research, 2015, 8, 2842-2849.	10.4	27
36	Approaching ultrastrong coupling in transmon circuit QED using a high-impedance resonator. Physical Review B, 2017, 95, .	3.2	24

3

#	Article	IF	CITATIONS
37	Strong and tunable couplings in flux-mediated optomechanics. Physical Review B, 2017, 96, .	3.2	23
38	Flux-mediated optomechanics with a transmon qubit in the single-photon ultrastrong-coupling regime. Physical Review Research, 2020, 2 , .	3.6	20
39	Thickness dependent interlayer transport in vertical MoS ₂ Josephson junctions. 2D Materials, 2016, 3, 031002.	4.4	18
40	Real Time Electron Tunneling and Pulse Spectroscopy in Carbon Nanotube Quantum Dots. Nano Letters, 2008, 8, 4039-4042.	9.1	17
41	Giant modulation of the electronic band gap of carbon nanotubes by dielectric screening. Scientific Reports, 2017, 7, 8828.	3.3	16
42	Imaging the formation of a p-n junction in a suspended carbon nanotube with scanning photocurrent microscopy. Journal of Applied Physics, $2011,110,$.	2.5	15
43	Superconducting electro-mechanics to test Di \tilde{A}^3 siâ \in "Penrose effects of general relativity in massive superpositions. AVS Quantum Science, 2021, 3, .	4.9	15
44	Synthesizing multi-phonon quantum superposition states using flux-mediated three-body interactions with superconducting qubits. Npj Quantum Information, 2019, 5 , .	6.7	14
45	Multi-terminal electronic transport in boron nitride encapsulated TiS ₃ nanosheets. 2D Materials, 2020, 7, 015009.	4.4	14
46	Broadband architecture for galvanically accessible superconducting microwave resonators. Applied Physics Letters, 2015, 107, 192602.	3.3	12
47	Tunneling spectroscopy of localized states of WS2 barriers in vertical van der Waals heterostructures. Physical Review B, 2020, 101, .	3.2	11
48	Nature of the Lamb shift in weakly anharmonic atoms: From normal-mode splitting to quantum fluctuations. Physical Review A, $2018, 98, .$	2.5	10
49	A split-cavity design for the incorporation of a DC bias in a 3D microwave cavity. Applied Physics Letters, 2017, 110, .	3.3	9
50	Investigating Laser-Induced Phase Engineering in MoS ₂ Transistors. IEEE Transactions on Electron Devices, 2018, 65, 4053-4058.	3.0	8
51	Interaction-Driven Giant Orbital Magnetic Moments in Carbon Nanotubes. Physical Review Letters, 2018, 121, 127704.	7.8	5
52	Optomechanical Microwave Amplification without Mechanical Amplification. Physical Review Applied, 2020, 13, .	3.8	5
53	Current Detection Using a Josephson Parametric Upconverter. Physical Review Applied, 2020, 14, .	3.8	4
54	Phonon-number resolution of voltage-biased mechanical oscillators with weakly anharmonic superconducting circuits. Physical Review A, 2021, 104, .	2.5	4