
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10552721/publications.pdf Version: 2024-02-01

KHALIDLAEDI

#	Article	IF	CITATIONS
1	Electro-thermal–mechanical performance of a sensor based on PAN carbon fibers and real-time detection of change under thermal and mechanical stimuli. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 263, 114806.	1.7	3
2	In-situ Strain Monitoring Performance of Flexible Nylon/Ag Conductive Fiber in Composites Subjected to Cyclic Tensile Loading. Lecture Notes in Civil Engineering, 2021, , 716-726.	0.3	0
3	Effect of nanofiller morphology on the electrical conductivity of polymer nanocomposites. Nano Express, 2021, 2, 010019.	1.2	18
4	Fabrication and electromechanical performance of carbon nanotube based conductive membrane and its application in real-time multimode strain detection in composites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 268, 115120.	1.7	4
5	Electrosynthesis of hierarchical Cu2O–Cu(OH)2 nanodendrites supported on carbon nanofibers/poly(para-phenylenediamine) nanocomposite as high-efficiency catalysts for methanol electrooxidation. International Journal of Hydrogen Energy, 2021, 46, 19926-19938.	3.8	16
6	Development studies of silver nanocomposite based sensors for acid penetration. Materials Today: Proceedings, 2021, , .	0.9	0
7	Real-time strain monitoring and damage detection of composites in different directions of the applied load using a microscale flexible Nylon/Ag strain sensor. Structural Health Monitoring, 2020, 19, 885-901.	4.3	16
8	Novel wireless sensing design for composite durability study. Composites Communications, 2020, 22, 100511.	3.3	3
9	Multi-mode real-time strain monitoring in composites using low vacuum carbon fibers as a strain sensor under different loading conditions. Smart Materials and Structures, 2020, 29, 085035.	1.8	6
10	In-Situ Monitoring, Identification and Quantification of Strain Deformation in Composites Under Cyclic Flexural Loading Using Nylon/Ag Fiber Sensor. IEEE Sensors Journal, 2020, 20, 5492-5500.	2.4	6
11	Durability sensor using low concentration carbon nano additives. Composites Science and Technology, 2020, 195, 108200.	3.8	8
12	Synthesis of carbon nanofibers/poly(para-phenylenediamine)/nickel particles nanocomposite for enhanced methanol electrooxidation. International Journal of Hydrogen Energy, 2019, 44, 24534-24545.	3.8	30
13	Effect of Porosity and Crystallinity on 3D Printed PLA Properties. Polymers, 2019, 11, 1487.	2.0	125
14	Real-time strain monitoring performance of flexible Nylon/Ag conductive fiber. Sensors and Actuators A: Physical, 2019, 295, 612-622.	2.0	17
15	Carbon-Based Aeronautical Epoxy Nanocomposites: Effectiveness of Atomic Force Microscopy (AFM) in Investigating the Dispersion of Different Carbonaceous Nanoparticles. Polymers, 2019, 11, 832.	2.0	16
16	Self-Assembly and Surface Tension Induced Fractal Conductive Network in Ternary Polymer System. ACS Applied Polymer Materials, 2019, 1, 493-499.	2.0	6
17	Hybrid Carbon Nano-Fibers with Improved Oxidation Resistance. Ceramics, 2019, 2, 25-33.	1.0	2
18	Nanotechnology and Development of Strain Sensor for Damage Detection. , 2019, , .		7

#	Article	IF	CITATIONS
19	The role of carbon and SiC crystallinities in the oxidation and mechanical property improvement of hybrid nano-fibers. Ceramics International, 2019, 45, 7286-7294.	2.3	9
20	CNT and polyaniline based sensors for the detection of acid penetration in polymer composite. Composites Science and Technology, 2018, 159, 111-118.	3.8	41
21	Electrical conductivity of carbon nanofiber reinforced resins: Potentiality of Tunneling Atomic Force Microscopy (TUNA) technique. Composites Part B: Engineering, 2018, 143, 148-160.	5.9	47
22	Multifunctional graphene/POSS epoxy resin tailored for aircraft lightning strike protection. Composites Part B: Engineering, 2018, 140, 44-56.	5.9	98
23	Fabrication of ceramic nanofibers using polydimethylsiloxane and polyacrylonitrile polymer blends. Journal of Applied Polymer Science, 2018, 135, 45967.	1.3	12
24	Nanocomposites conductivity point measurement using Tunneling AFM (TUNA). MATEC Web of Conferences, 2018, 233, 00022.	0.1	0
25	Electrical characterization of aeronautical nanocomposites supported by Tunneling AFM (TUNA). MATEC Web of Conferences, 2018, 233, 00023.	0.1	0
26	Experimental and Numerical Investigation of the Silicon Particle Distribution in Electrospun Nanofibers. Langmuir, 2018, 34, 7147-7152.	1.6	10
27	Anisotropic thermal conductivity study of nano-additives/epoxy based nanocomposites. AIP Conference Proceedings, 2018, , .	0.3	1
28	Influence of carbon nanoparticles/epoxy matrix interaction on mechanical, electrical and transport properties of structural advanced materials. Nanotechnology, 2017, 28, 094001.	1.3	72
29	Experimental evaluation and modeling of thermal conductivity of tetrafunctional epoxy resin containing different carbon nanostructures. Polymer Engineering and Science, 2017, 57, 779-786.	1.5	25
30	Fabrication and characterization of carbon nanofibers from polyacrylonitrile/pitch blends. Journal of Applied Polymer Science, 2017, 134, 45388.	1.3	23
31	Thermal investigation of tetrafunctional epoxy resin filled with different carbonaceous nanostructures. AIP Conference Proceedings, 2016, , .	0.3	0
32	Rheological and morphological properties of graphene-epoxy nanocomposites. AIP Conference Proceedings, 2016, , .	0.3	3
33	Intelligent design of conducting network in polymers using numerical and experimental approaches. RSC Advances, 2016, 6, 95010-95020.	1.7	12
34	Development of a hydroxyapatite-poly(d,l-lactide-co-glycolide) infiltrated carbon foam for orthopedic applications. Carbon, 2016, 98, 106-114.	5.4	17
35	Viscoelastic properties of graphene-based epoxy resins. AIP Conference Proceedings, 2015, , .	0.3	4
36	Relationships between nanofiller morphology and viscoelastic properties in CNF/epoxy resins. Polymer Composites, 2015, 36, 1152-1160.	2.3	44

#	Article	IF	CITATIONS
37	Fluorescent composite scaffolds made of nanodiamonds/polycaprolactone. Chemical Physics Letters, 2015, 641, 123-128.	1.2	14
38	The Future of Carbon-Based Scaffolds in Foot and Ankle Surgery. Clinics in Podiatric Medicine and Surgery, 2015, 32, 73-91.	0.2	3
39	Influence of nanofiller morphology on the viscoelastic properties of CNF/epoxy resins. AIP Conference Proceedings, 2014, , .	0.3	15
40	Fracture toughness of fiber metal laminates: Carbon nanotube modified Ti–polymer–matrix composite interface. Journal of Composite Materials, 2014, 48, 2697-2710.	1.2	17
41	Augmented cooling vest system subassembly: Design and analysis. Energy Conversion and Management, 2014, 79, 140-145.	4.4	9
42	The role of carbon nanofiber defects on the electrical and mechanical properties of CNF-based resins. Nanotechnology, 2013, 24, 305704.	1.3	97
43	Influence of Nanomaterials in Polymer Composites on Thermal Conductivity. Journal of Heat Transfer, 2012, 134, .	1.2	14
44	Hybrid Carbon-Based Scaffolds for Applications in Soft Tissue Reconstruction. Tissue Engineering - Part A, 2012, 18, 946-956.	1.6	9
45	A carbon nanotube-based composite for the thermal control of heat loads. Carbon, 2012, 50, 542-550.	5.4	12
46	Use of carbon nanostructures in transient spike power applications. International Journal of Thermal Sciences, 2012, 53, 1-7.	2.6	3
47	Carbon nanofiber based buckypaper used as a thermal interface material. Carbon, 2011, 49, 3820-3828.	5.4	21
48	C/C composite, carbon nanotube and paraffin wax hybrid systems for the thermal control of pulsed power in electronics. Carbon, 2010, 48, 813-824.	5.4	54
49	Thermal properties of copper-coated carbon foams. Carbon, 2009, 47, 2620-2626.	5.4	31
50	Nanomaterials Formulation and Toxicity Impact. , 2009, , 291-359.		0
51	Processing, Properties, and Flow Behavior of CarbonNanofiber–Based Polymeric Nanocomposites. , 2009, , 23-55.		0
52	Carbon nanoadditives to enhance latent energy storage of phase change materials. Journal of Applied Physics, 2008, 103, .	1.1	198
53	A Novel Approach to Control Growth, Orientation, and Shape of Human Osteoblasts. Tissue Engineering - Part A, 2008, 14, 255-265.	1.6	19
54	Effect of Carbon Nanofiber Heat Treatment on Physical Properties of Polymeric Nanocomposites—Part I. Journal of Nanomaterials, 2007, 2007, 1-6.	1.5	18

#	Article	IF	CITATIONS
55	Use of exfoliated graphite filler to enhance polymer physical properties. Carbon, 2007, 45, 1727-1734.	5.4	323
56	Effect of particle dimension on biocompatibility of carbon nanomaterials. Carbon, 2007, 45, 2828-2835.	5.4	103
57	The effect of a CNT interface on the thermal resistance of contacting surfaces. Carbon, 2007, 45, 695-703.	5.4	73
58	Engineering Solution in Monitoring Nanoparticle-Fluid Flow During Nanocomposites Processing. Journal of Nanoparticle Research, 2007, 9, 441-454.	0.8	9
59	Carbon foam matrices saturated with PCM for thermal protection purposes. Carbon, 2006, 44, 2080-2088.	5.4	161
60	Carbon nanoparticle-filled polymer flow in the fabrication of novel fiber composites. Carbon, 2006, 44, 1682-1689.	5.4	5
61	Carbon nanofluids flow behavior in novel composites. Microfluidics and Nanofluidics, 2006, 2, 425-433.	1.0	1
62	Hierarchical morphology of carbon single-walled nanotubes during sonication in an aliphatic diamine. Polymer, 2005, 46, 10854-10865.	1.8	67
63	Bubble growth mechanism in carbon foams. Carbon, 2005, 43, 1055-1064.	5.4	45
64	Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon, 2005, 43, 3067-3074.	5.4	374
65	Study of the growth and motion of graphitic foam bubbles. Carbon, 2005, 43, 3075-3087.	5.4	23
66	Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix. Energy Conversion and Management, 2005, 46, 847-867.	4.4	343
67	Purification process for single-wall carbon nanotubes. Carbon, 2003, 41, 1477-1488.	5.4	139
68	Carbon Fibers. , 1998, , 169-201.		5
69	An attempt to characterize and elaborate anisotropic pitches and derived carbon fibers. Part I: Preparation by bubbling. Carbon, 1994, 32, 11-21.	5.4	4
70	An attempt to characterize and elaborate anisotropic pitches and derived carbon fibers. Part II: Preparation by separation. Carbon, 1994, 32, 61-70.	5.4	7
71	Performance evaluation of coated carbon foam material in heat exchanger applications. International Journal of Energy Research, 0, , .	2.2	1