
E Romeo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10552116/publications.pdf Version: 2024-02-01

F ROMEO

#	Article	IF	CITATIONS
1	Performance of AISI 316L-stainless steel foams towards the formation of graphene related nanomaterials by catalytic decomposition of methane at high temperature. Catalysis Today, 2022, 383, 236-246.	4.4	8
2	Selective synthesis of carbon nanotubes by catalytic decomposition of methane using Co-Cu/cellulose derived carbon catalysts: A comprehensive kinetic study. Chemical Engineering Journal, 2021, 404, 126103.	12.7	29
3	Synthesis of graphenic nanomaterials by decomposition of methane on a Ni-Cu/biomorphic carbon catalyst. Kinetic and characterization results. Catalysis Today, 2018, 299, 67-79.	4.4	19
4	Growth of carbonaceous nanomaterials over stainless steel foams. Effect of activation temperature. Catalysis Today, 2016, 273, 41-49.	4.4	9
5	Kinetics of liquid phase cyclohexene hydrogenation on Pd–Al/biomorphic carbon catalysts. Catalysis Today, 2015, 249, 127-136.	4.4	9
6	A Langmuir–Hinshelwood approach to the kinetic modelling of catalytic ammonia decomposition in an integral reactor. Physical Chemistry Chemical Physics, 2013, 15, 12104.	2.8	58
7	Ni-Co-Mg-Al catalysts for hydrogen and carbonaceous nanomaterials production by CCVD of methane. Catalysis Today, 2011, 172, 143-151.	4.4	35
8	Kinetics of carbon nanotubes growth on a Ni–Mg–Al catalyst by CCVD of methane: Influence of catalyst deactivation. Catalysis Today, 2010, 154, 217-223.	4.4	29
9	Carbon Nanotube Growth by Catalytic Chemical Vapor Deposition: A Phenomenological Kinetic Model. Journal of Physical Chemistry C, 2010, 114, 4773-4782.	3.1	54
10	Development of aligned carbon nanotubes layers over stainless steel mesh monoliths. Catalysis Today, 2009, 147, S71-S75.	4.4	44
11	Development of Ni–Al Catalysts for Hydrogen and Carbon Nanofibre Production by Catalytic Decomposition of Methane. Effect of MgO Addition. Topics in Catalysis, 2008, 51, 158-168.	2.8	12
12	Carbon nanofiber growth onto a cordierite monolith coated with Co-mordenite. Catalysis Today, 2008, 133-135, 7-12.	4.4	16
13	Texturising and structurising mechanisms of carbon nanofilaments during growth. Journal of Materials Chemistry, 2007, 17, 4611.	6.7	44
14	Development of Ni–Cu–Mg–Al catalysts for the synthesis of carbon nanofibers by catalytic decomposition of methane. Journal of Catalysis, 2007, 251, 223-232.	6.2	89
15	Improvement of activity and stability of Ni–Mg–Al catalysts by Cu addition during hydrogen production by catalytic decomposition of methane. Catalysis Today, 2006, 116, 264-270.	4.4	68
16	New Ni–Cu–Mg–Al-based catalysts preparation procedures for the synthesis of carbon nanofibers and nanotubes. Journal of Physics and Chemistry of Solids, 2006, 67, 1162-1167.	4.0	19
17	Growing mechanism of CNTs: a kinetic approach. Journal of Catalysis, 2004, 224, 197-205.	6.2	99
18	Relationship between the kinetic parameters of different catalyst deactivation models. Chemical Engineering Journal, 2003, 94, 19-28.	12.7	48

#	Article	IF	CITATIONS
19	Catalytic decomposition of methane over Ni-Al2O3 coprecipitated catalysts. Applied Catalysis A: General, 2003, 252, 363-383.	4.3	220
20	Hydrogen Production by Steam Gasification of Biomass Using Niâ^'Al Coprecipitated Catalysts Promoted with Magnesium. Energy & Fuels, 2002, 16, 1222-1230.	5.1	104
21	Hydrogen Production by Catalytic Cracking of Methane Using Ni-Al2O3 Catalysts. Influence of the Operating Conditions. Studies in Surface Science and Catalysis, 2001, , 391-398.	1.5	4
22	Gas Phase Selective Hydrogenation of Acetylene. Importance of the Formation of Ni-Co and Ni-Cu Bimetallic Clusters on the Selectivity and Coke Deposition. Studies in Surface Science and Catalysis, 2001, 139, 37-44.	1.5	14
23	Preparation and characterisation of Ni-Mg-Al hydrotalcites as hydrogenation catalysts. Studies in Surface Science and Catalysis, 2000, , 2099-2104.	1.5	5
24	Acetylene hydrogenation with a modified Ni-Zn-Al catalyst. Influence of the operating conditions on the coking rate. Studies in Surface Science and Catalysis, 1999, 126, 113-120.	1.5	3
25	Acetylene hydrogenation on Ni–Al–Cr oxide catalysts: the role of added Zn. Applied Clay Science, 1998, 13, 363-379.	5.2	54
26	Deactivation by coking and poisoning of spinel-type Ni catalysts. Catalysis Today, 1997, 37, 255-265.	4.4	35