
James A Hamilton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10552067/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Formation of Highly Soluble Oligomers of α-Synuclein Is Regulated by Fatty Acids and Enhanced in Parkinson's Disease. Neuron, 2003, 37, 583-595.	8.1	522
2	Ionization and phase behavior of fatty acids in water: application of the Gibbs phase rule. Biochemistry, 1988, 27, 1881-1888.	2.5	421
3	Fast/Glycolytic Muscle Fiber Growth Reduces Fat Mass and Improves Metabolic Parameters in Obese Mice. Cell Metabolism, 2008, 7, 159-172.	16.2	331
4	Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. Brain, 2018, 141, 422-458.	7.6	315
5	Movement of fatty acids, fatty acid analogs, and bile acids across phospholipid bilayers. Biochemistry, 1993, 32, 11074-11085.	2.5	313
6	Location of High and Low Affinity Fatty Acid Binding Sites on Human Serum Albumin Revealed by NMR Drug-competition Analysis. Journal of Molecular Biology, 2006, 361, 336-351.	4.2	301
7	Fatty acid transport: difficult or easy?. Journal of Lipid Research, 1998, 39, 467-481.	4.2	279
8	Fatty Acid Flip-Flop in Phospholipid Bilayers Is Extremely Fast. Biochemistry, 1995, 34, 11928-11937.	2.5	276
9	Phase behavior and bilayer properties of fatty acids: hydrated 1:1 acid-soaps. Biochemistry, 1986, 25, 2804-2812.	2.5	195
10	Medium-chain vs long-chain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: implications for the mechanisms of lipase action. Biochemistry, 1990, 29, 1136-1142.	2.5	183
11	Fast flip-flop of cholesterol and fatty acids in membranes: implications for membrane transport proteins. Current Opinion in Lipidology, 2003, 14, 263-271.	2.7	170
12	How fatty acids of different chain length enter and leave cells by free diffusion. Prostaglandins Leukotrienes and Essential Fatty Acids, 2006, 75, 149-159.	2.2	140
13	Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes. Molecular and Cellular Endocrinology, 2008, 296, 32-40.	3.2	138
14	A Model for Fatty Acid Transport into the Brain. Journal of Molecular Neuroscience, 2007, 33, 12-17.	2.3	135
15	Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures tell us. Progress in Lipid Research, 2004, 43, 177-199.	11.6	126
16	Transbilayer movement of bile acids in model membranes. Biochemistry, 1987, 26, 1801-1804.	2.5	120
17	Dissociation of Long and Very Long Chain Fatty Acids from Phospholipid Bilayersâ€. Biochemistry, 1996, 35, 16055-16060.	2.5	116
18	Brain Uptake and Utilization of Fatty Acids, Lipids and Lipoproteins: Application to Neurological Disorders. Journal of Molecular Neuroscience, 2007, 33, 2-11.	2.3	110

#	Article	IF	CITATIONS
19	Fatty Acid Transport: The Diffusion Mechanism in Model and Biological Membranes. Journal of Molecular Neuroscience, 2001, 16, 99-108.	2.3	109
20	Rapid Flip-flop of Oleic Acid across the Plasma Membrane of Adipocytes. Journal of Biological Chemistry, 2003, 278, 7988-7995.	3.4	107
21	A Solid-State NMR Study of Phospholipid-Cholesterol Interactions: Sphingomyelin-Cholesterol Binary Systems. Biophysical Journal, 2002, 83, 1465-1478.	0.5	105
22	Mediumâ€Chain Oil Reduces Fat Mass and Downâ€regulates Expression of Adipogenic Genes in Rats. Obesity, 2003, 11, 734-744.	4.0	101
23	Interactions of very long-chain saturated fatty acids with serum albumin. Journal of Lipid Research, 2002, 43, 1000-1010.	4.2	99
24	Mechanism of cellular uptake of long-chain fatty acids: Do we need cellular proteins?. Molecular and Cellular Biochemistry, 2002, 239, 17-23.	3.1	99
25	New insights into the roles of proteins and lipids in membrane transport of fatty acids. Prostaglandins Leukotrienes and Essential Fatty Acids, 2007, 77, 355-361.	2.2	98
26	Interactions of triglycerides with phospholipids: incorporation into the bilayer structure and formation of emulsions. Biochemistry, 1989, 28, 2514-2520.	2.5	94
27	CD36 Enhances Fatty Acid Uptake by Increasing the Rate of Intracellular Esterification but Not Transport across the Plasma Membrane. Biochemistry, 2013, 52, 7254-7261.	2.5	94
28	Interactions of oleic acid with liver fatty acid binding protein: a carbon-13 NMR study. Biochemistry, 1988, 27, 711-717.	2.5	92
29	The Ionization Behavior of Fatty Acids and Bile Acids in Micelles and Membranes. Hepatology, 1984, 4, 77S-79S.	7.3	90
30	Role of Caveolin-1 and Cholesterol in Transmembrane Fatty Acid Movementâ€. Biochemistry, 2006, 45, 2882-2893.	2.5	89
31	Flexibility is a likely determinant of binding specificity in the case of ileal lipid binding protein. Structure, 1996, 4, 785-800.	3.3	88
32	Porphyromonas gingivalis accelerates inflammatory atherosclerosis in the innominate artery of ApoE deficient mice. Atherosclerosis, 2011, 215, 52-59.	0.8	83
33	In Vivo Magnetic Resonance Imaging of Experimental Thrombosis in a Rabbit Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1556-1560.	2.4	79
34	A robust rabbit model of human atherosclerosis and atherothrombosis. Journal of Lipid Research, 2009, 50, 787-797.	4.2	78
35	Fat depot origin affects fatty acid handling in cultured rat and human preadipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E238-E247.	3.5	75
36	Binding of 13-HODE and 15-HETE to Phospholipid Bilayers, Albumin, and Intracellular Fatty Acid Binding Proteins. Journal of Biological Chemistry, 2001, 276, 15575-15580.	3.4	72

#	Article	IF	CITATIONS
37	Correspondence of Fatty Acid and Drug Binding Sites on Human Serum Albumin: A Two-Dimensional Nuclear Magnetic Resonance Study. Biochemistry, 2013, 52, 1559-1567.	2.5	71
38	Distinct Lipid A Moieties Contribute to Pathogen-Induced Site-Specific Vascular Inflammation. PLoS Pathogens, 2014, 10, e1004215.	4.7	71
39	CD36 Binds Oxidized Low Density Lipoprotein (LDL) in a Mechanism Dependent upon Fatty Acid Binding. Journal of Biological Chemistry, 2015, 290, 4590-4603.	3.4	71
40	Eicosapentaenoic acid, but not oleic acid, stimulates β-oxidation in adipocytes. Lipids, 2005, 40, 815-821.	1.7	65
41	Interactions of acyl-coenzyme A with phosphatidylcholine bilayers and serum albumin. Biochemistry, 1992, 31, 557-567.	2.5	64
42	Effect of PEG molecular weight on stability, T2 contrast, cytotoxicity, and cellular uptake of superparamagnetic iron oxide nanoparticles (SPIONs). Colloids and Surfaces B: Biointerfaces, 2014, 119, 106-114.	5.0	64
43	Interactions of Lyso 1-Palmitoylphosphatidylcholine with Phospholipids: A 13C and 31P NMR Study. Biochemistry, 1995, 34, 5666-5677.	2.5	61
44	Fatty acid binding proteins reduce 15-lipoxygenase-induced oxygenation of linoleic acid and arachidonic acid. Lipids and Lipid Metabolism, 1997, 1346, 75-85.	2.6	60
45	Solution structure of human intestinal fatty acid binding protein: implications for ligand entry and exit. Journal of Biomolecular NMR, 1997, 9, 213-228.	2.8	58
46	In vivo Detection of Vulnerable Atherosclerotic Plaque by MRI in a Rabbit Model. Circulation: Cardiovascular Imaging, 2010, 3, 323-332.	2.6	57
47	Disorder Amidst Membrane Order: Standardizing Laurdan Generalized Polarization and Membrane Fluidity Terms. Journal of Fluorescence, 2017, 27, 243-249.	2.5	55
48	A Multinuclear Solid-State NMR Study of Phospholipid-Cholesterol Interactions. Dipalmitoylphosphatidylcholine-Cholesterol Binary System. Biochemistry, 1995, 34, 14174-14184.	2.5	54
49	Protective Role for TLR4 Signaling in Atherosclerosis Progression as Revealed by Infection with a Common Oral Pathogen. Journal of Immunology, 2012, 189, 3681-3688.	0.8	54
50	Rotational and Segmental Motions in the Lipids of Human Plasma Lipoproteins. Journal of Biological Chemistry, 1974, 249, 4872-4878.	3.4	54
51	The enigmatic membrane fatty acid transporter CD36: New insights into fatty acid binding and their effects on uptake of oxidized LDL. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 138, 64-70.	2.2	52
52	Interactions between fatty acids and $\hat{l}\pm$ -synuclein. Journal of Lipid Research, 2006, 47, 1714-1724.	4.2	51
53	Fatty Acid Flip-Flop in a Model Membrane Is Faster Than Desorption into the Aqueous Phase. Biochemistry, 2008, 47, 9081-9089.	2.5	51
54	Genetic Disruption of Myostatin Reduces the Development of Proatherogenic Dyslipidemia and Atherogenic Lesions In <i>Ldlr</i> Null Mice. Diabetes, 2009, 58, 1739-1748.	0.6	51

#	Article	IF	CITATIONS
55	Fatty acid transport and metabolism in HepG2 cells. American Journal of Physiology - Renal Physiology, 2006, 290, G528-G534.	3.4	50
56	Solution Structure and Backbone Dynamics of Human Liver Fatty Acid Binding Protein: Fatty Acid Binding Revisited. Biophysical Journal, 2012, 102, 2585-2594.	0.5	49
57	[28] Nuclear magnetic resonance studies of lipoproteins. Methods in Enzymology, 1986, 128, 472-515.	1.0	48
58	Solution structure of ileal lipid binding protein in complex with glycocholate. FEBS Journal, 2000, 267, 2929-2938.	0.2	48
59	Solubilization and localization of weakly polar lipids in unsonicated egg phosphatidylcholine: a carbon-13 MAS NMR study. Biochemistry, 1991, 30, 2894-2902.	2.5	47
60	Interactions of acyl carnitines with model membranes. Journal of Lipid Research, 2002, 43, 1429-1439.	4.2	46
61	Quantification In Situ of Crystalline Cholesterol and Calcium Phosphate Hydroxyapatite in Human Atherosclerotic Plaques by Solid-State Magic Angle Spinning NMR. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1630-1636.	2.4	44
62	Atheroma Susceptible to Thrombosis Exhibit Impaired Endothelial Permeability In Vivo as Assessed by Nanoparticle-Based Fluorescence Molecular Imaging. Circulation: Cardiovascular Imaging, 2017, 10, .	2.6	43
63	Mechanism of cellular uptake of long-chain fatty acids: Do we need cellular proteins?. Molecular and Cellular Biochemistry, 2002, 239, 17-23.	3.1	43
64	Identification of Atherosclerotic Lipid Deposits by Diffusion-Weighted Imaging. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1440-1446.	2.4	40
65	The effect of free cholesterol on the solubilization of cholesteryl oleate in phosphatidylcholine bilayers: A 13C-NMR study. Biochimica Et Biophysica Acta - Biomembranes, 1986, 860, 345-353.	2.6	38
66	Regions of Low Endothelial Shear Stress Colocalize With Positive Vascular Remodeling and Atherosclerotic Plaque Disruption. Circulation: Cardiovascular Imaging, 2013, 6, 302-310.	2.6	38
67	MRI of Atherothrombosis Associated With Plaque Rupture. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 240-245.	2.4	37
68	Atherosclerosis, Periodontal Disease, and Treatment with Resolvins. Current Atherosclerosis Reports, 2017, 19, 57.	4.8	37
69	The Relationship of Ectopic Lipid Accumulation to Cardiac and Vascular Function in Obesity and Metabolic Syndrome. Obesity, 2010, 18, 1116-1121.	3.0	35
70	Esterification of free fatty acids in adipocytes: a comparison between octanoate and oleate. Biochemical Journal, 2000, 349, 463-471.	3.7	34
71	Effect of disease progression on liver apparent diffusion coefficient values in a murine model of NASH at 11.7 tesla MRI. Journal of Magnetic Resonance Imaging, 2011, 33, 882-888.	3.4	33
72	Thermotropic properties and molecular dynamics of cholesteryl ester rich very low density lipoproteins: effect of hydrophobic core on polar surface. Biochemistry, 1984, 23, 5343-5352.	2.5	32

#	Article	IF	CITATIONS
73	Effect of disease progression on liver apparent diffusion coefficient and T ₂ values in a murine model of hepatic fibrosis at 11.7 Tesla MRI. Journal of Magnetic Resonance Imaging, 2012, 35, 140-146.	3.4	31
74	Molecular motions and thermotropic phase behavior of cholesteryl esters with triolein. Biochemistry, 1985, 24, 7971-7980.	2.5	30
75	Title is missing!. Molecular and Cellular Biochemistry, 1999, 192, 109-121.	3.1	29
76	NMR reveals molecular interactions and dynamics of fatty acid binding to albumin. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 5418-5426.	2.4	29
77	Fatty acids are rapidly delivered to and extracted from membranes by methyl-Â-cyclodextrin. Journal of Lipid Research, 2010, 51, 120-131.	4.2	28
78	Identification of cholesteryl esters in human carotid atherosclerosis by ex vivo image-guided proton MRS. Journal of Lipid Research, 2006, 47, 310-317.	4.2	27
79	Oleate-induced formation of fat cells with impaired insulin sensivitity. Lipids, 2006, 41, 267-271.	1.7	26
80	The influence of pericardial fat upon left ventricular function in obese females: evidence of a site-specific effect. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 37.	3.3	26
81	Fatty acids are rapidly delivered to and extracted from membranes by methyl-β-cyclodextrin. Journal of Lipid Research, 2010, 51, 120-131.	4.2	26
82	Temperature-dependent molecular motions of cholesterol esters: a carbon-13 nuclear magnetic resonance study. Biochemistry, 1982, 21, 6857-6867.	2.5	25
83	Quantification of Cholesteryl Esters in Human and Rabbit Atherosclerotic Plaques by Magic-Angle Spinning13C-NMR. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 2682-2688.	2.4	25
84	Solution Structure of Human Intestinal Fatty Acid Binding Protein with a Naturally-Occurring Single Amino Acid Substitution (A54T) that Is Associated with Altered Lipid Metabolism,. Biochemistry, 2003, 42, 7339-7347.	2.5	25
85	Free Fatty Acids Modulate Intermembrane Trafficking of Cholesterol by Increasing Lipid Mobilities:Â Novel13C NMR Analyses of Free Cholesterol Partitioningâ€. Biochemistry, 2003, 42, 1637-1645.	2.5	24
86	Mediumâ€Chain Fatty Acids Attenuate Agonist‣timulated Lipolysis, Mimicking the Effects of Starvation. Obesity, 2004, 12, 599-611.	4.0	24
87	Caveolins sequester FA on the cytoplasmic leaflet of the plasma membrane, augment triglyceride formation, and protect cells from lipotoxicity. Journal of Lipid Research, 2010, 51, 914-922.	4.2	23
88	Sulfonylureas Rapidly Cross Phospholipid Bilayer Membranes by a Free-Diffusion Mechanism. Diabetes, 2003, 52, 2526-2531.	0.6	22
89	Fast Diffusion of Very Long Chain Saturated Fatty Acids across a Bilayer Membrane and Their Rapid Extraction by Cyclodextrins. Journal of Biological Chemistry, 2009, 284, 33296-33304.	3.4	22
90	Influence of muscle fiber type composition on early fat accumulation under high-fat diet challenge. PLoS ONE, 2017, 12, e0182430.	2.5	21

#	Article	IF	CITATIONS
91	SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect FA translocation. Journal of Lipid Research, 2020, 61, 790-807.	4.2	21
92	Mechanism of cellular uptake of long-chain fatty acids: Do we need cellular proteins?. , 2002, , 17-23.		21
93	Molecular organization and motions of cholesteryl esters in crystalline and liquid crystalline phases: A carbon-13 and proton magic angle spinning NMR study. Biochemistry, 1993, 32, 9038-9052.	2.5	20
94	Fatty-Acid-Binding Protein from the Flight Muscle of Locusta migratoria:  Evolutionary Variations in Fatty Acid Binding. Biochemistry, 2006, 45, 6296-6305.	2.5	20
95	The comparative effects of high fat diet or disturbed blood flow on glycocalyx integrity and vascular inflammation. Translational Medicine Communications, 2018, 3, .	1.4	20
96	Esterification of free fatty acids in adipocytes: a comparison between octanoate and oleate. Biochemical Journal, 2000, 349, 463.	3.7	19
97	Measuring the Adsorption of Fatty Acids to Phospholipid Vesicles by Multiple Fluorescence Probes. Biophysical Journal, 2008, 94, 4493-4503.	0.5	19
98	Identification of High-Risk Plaques by MRI and Fluorescence Imaging in a Rabbit Model of Atherothrombosis. PLoS ONE, 2015, 10, e0139833.	2.5	19
99	Magnetization transfer magnetic resonance of human atherosclerotic plaques ex vivo detects areas of high protein density. Journal of Cardiovascular Magnetic Resonance, 2011, 13, 73.	3.3	18
100	Healthy obese persons. Current Opinion in Endocrinology, Diabetes and Obesity, 2013, 20, 369-376.	2.3	17
101	Caveolins sequester FA on the cytoplasmic leaflet of the plasma membrane, augment triglyceride formation, and protect cells from lipotoxicity. Journal of Lipid Research, 2010, 51, 914-922.	4.2	16
102	Brain Uptake and Utilization of Fatty Acids, Lipids & Lipoproteins: Recommendations for Future Research. Journal of Molecular Neuroscience, 2007, 33, 146-150.	2.3	15
103	Healing of an Asymptomatic Carotid Plaque Ulceration. Circulation, 2008, 118, e147-8.	1.6	15
104	Detection of thrombus size and protein content by ex vivo magnetization transfer and diffusion weighted MRI. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 49.	3.3	15
105	Spatio-temporal texture (SpTeT) for distinguishing vulnerable from stable atherosclerotic plaque on dynamic contrast enhancement (DCE) MRI in a rabbit model. Medical Physics, 2014, 41, 042303.	3.0	14
106	The brains of aged mice are characterized by altered tissue diffusion properties and cerebral microbleeds. Journal of Translational Medicine, 2020, 18, 277.	4.4	14
107	Allosterically Coupled Multisite Binding of Testosterone to Human Serum Albumin. Endocrinology, 2021, 162, .	2.8	14
108	Identification of different lipid phases and calcium phosphate deposits in human carotid artery plaques by MAS NMR spectroscopy. Magnetic Resonance in Medicine, 1998, 39, 184-189.	3.0	13

#	Article	IF	CITATIONS
109	Fluorescence Assays for Measuring Fatty Acid Binding and Transport Through Membranes. Methods in Molecular Biology, 2007, 400, 237-255.	0.9	13
110	Effects of thiol antioxidant β-mercaptoethanol on diet-induced obese mice. Life Sciences, 2014, 107, 32-41.	4.3	10
111	Magic-angle spinning and solution 13C nuclear magnetic resonance studies of medium- and long-chain cholesteryl esters in model bilayers. Biochemistry, 1995, 34, 16065-16073.	2.5	9
112	Incorporation of [1-13C]oleate into cellular triglycerides in differentiating 3T3L1 cells. Lipids, 1999, 34, 825-831.	1.7	9
113	Intracellular Lipid Binding Proteins: Evolution, Structure, and Ligand Binding. , 0, , 95-118.		9
114	A Mouse Model for Pathogen-induced Chronic Inflammation at Local and Systemic Sites. Journal of Visualized Experiments, 2014, , e51556.	0.3	9
115	Temperatureâ€dependent molecular motions of saturated acyl cholesteryl esters: A13C NMR study. Journal of Chemical Physics, 1986, 85, 7380-7387.	3.0	8
116	Ex vivo identification of atherosclerotic plaque calcification by a31P solid-state magnetic resonance imaging technique. Magnetic Resonance in Medicine, 2006, 56, 1380-1383.	3.0	8
117	Study of the miscibility of cholesteryl oleate in a matrix of ceramide, cholesterol and fatty acid. Chemistry and Physics of Lipids, 2011, 164, 664-671.	3.2	8
118	13C NMR Studies of the Interactions of Fatty Acids with Phospholipid Bilayers, Plasma Lipoproteins, and Proteins. , 1995, , 117-157.		7
119	Novel <i>ANO5</i> mutation c.1067G>T (p.C356F) identified by whole genome sequencing in a big family with atypical gnathodiaphyseal dysplasia. Head and Neck, 2019, 41, 230-238.	2.0	7
120	A 13C nuclear magnetic resonance study of free fatty acid incorporation in acylated lipids in differentiating predipocytes. Lipids, 1998, 33, 449-454.	1.7	5
121	Conformation and inhibitory properties of peptides based on the tissue kallikreinâ€aprotinin complex. International Journal of Peptide and Protein Research, 1991, 37, 536-543.	0.1	5
122	Acrylodan-Labeled Intestinal Fatty Acid-Binding Protein to Measure Concentrations of Unbound Fatty Acids. Methods in Molecular Biology, 2007, 400, 27-43.	0.9	5
123	Evaluation of atherosclerotic lesions in cholesterol-fed mice during treatment with paclitaxel in lipid nanoparticles: a magnetic resonance imaging study. Journal of Biomedical Research, 2017, 31, 116.	1.6	5
124	Aging-induced microbleeds of the mouse thalamus compared to sensorimotor and memory defects. Neurobiology of Aging, 2021, 100, 39-47.	3.1	4
125	Brain Fatty Acid Uptake. Advances in Neurobiology, 2012, , 793-817.	1.8	4
126	NMR assignment and structural characterization of the fatty acid binding protein from the flight muscle of Locusta migratoria. Journal of Biomolecular NMR, 2003, 25, 355-356.	2.8	2

#	Article	IF	CITATIONS
127	Physical aspects of fatty acid transport between and through biological membranes. Advances in Molecular and Cell Biology, 2003, 33, 153-172.	0.1	2
128	Application of MRI to detect high-risk atherosclerotic plaque. Expert Review of Cardiovascular Therapy, 2011, 9, 545-550.	1.5	1
129	A comparative study of the backbone dynamics of two closely related lipid binding proteins: Bovine heart fatty acid binding protein and porcine ileal lipid binding protein. , 1999, , 109-121.		1
130	In Memory of Hugo W. Moser, MD (1924–2007). Journal of Molecular Neuroscience, 2007, 33, 1-1.	2.3	0
131	Stable and Vulnerable Atherosclerotic Plaques. , 2011, , 3-25.		Ο