Catherine Beal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10551232/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The impact of fluid-dynamic stress in stirred tank bioreactors on the synthesis of cellulases by Trichoderma reesei at the intracellular and extracellular levels. Chemical Engineering Science, 2021, 232, 116353.	1.9	4
2	Culture conditions affect Lactobacillus reuteri DSM 17938 ability to perform glycerol bioconversion into 3-hydroxypropionic acid. Journal of Bioscience and Bioengineering, 2021, 131, 501-508.	1.1	2
3	Scale-up agitation criteria for Trichoderma reesei fermentation. Chemical Engineering Science, 2017, 172, 158-168.	1.9	35
4	Survival of Bifidobacterium strains in organic fermented milk isÂimproved as a result of membrane fatty acid composition. International Dairy Journal, 2016, 61, 1-9.	1.5	10
5	Draft Genome Sequence of <i>Lactobacillus delbrueckii</i> subsp. <i>bulgaricus</i> CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk. Genome Announcements, 2016, 4, .	0.8	1
6	Freezing of Probiotic Bacteria. , 2015, , 179-212.		13
7	Membrane fatty acid composition and fluidity are involved in the resistance to freezing of <scp><i>L</i></scp> <i>actobacillus buchneri</i> â€ <scp>R</scp> 1102 and <scp><i>B</i></scp> <i>iiifdobacterium longum</i> â€ <scp>R</scp> 0175. Microbial Biotechnology, 2015, 8, 311-318	2.0	30
8	Survival of three Bifidobacterium animalis subsp. lactis strains is related to trans-vaccenic and α-linolenic acids contents in organic fermented milks. LWT - Food Science and Technology, 2014, 56, 290-295.	2.5	9
9	Fatty acid profile, trans-octadecenoic, α-linolenic and conjugated linoleic acid contents differing in certified organic and conventional probiotic fermented milks. Food Chemistry, 2012, 135, 2207-2214.	4.2	60
10	Technological and safety properties display biodiversity among enterococci isolated from two Egyptian cheeses, "Ras―and "Domiati― International Journal of Food Microbiology, 2012, 153, 314-322	2.1 2.1	13
11	Microfiltration conditions modify Lactobacillus bulgaricus cryotolerance in response to physiological changes. Bioprocess and Biosystems Engineering, 2011, 34, 197-204.	1.7	10
12	Starvation induces physiological changes that act on the cryotolerance of <i>Lactobacillus acidophilus</i> RD758. Biotechnology Progress, 2011, 27, 342-350.	1.3	22
13	Effect of Centrifugation Conditions on the Cryotolerance of Lactobacillus bulgaricus CFL1. Food and Bioprocess Technology, 2010, 3, 36-42.	2.6	24
14	Cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1 is influenced by the physiological state during fermentation. International Dairy Journal, 2010, 20, 792-799.	1.5	16
15	Fermentation pH Influences the Physiological-State Dynamics of <i>Lactobacillus bulgaricus</i> CFL1 during pH-Controlled Culture. Applied and Environmental Microbiology, 2009, 75, 4374-4381.	1.4	68
16	Dynamic analysis of Lactobacillus delbrueckii subsp. bulgaricus CFL1 physiological characteristics during fermentation. Applied Microbiology and Biotechnology, 2008, 81, 559-570.	1.7	19
17	Cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1 is modified by acquisition of antibiotic resistance. Cryobiology, 2007, 55, 19-26.	0.3	8
18	Multiparametric flow cytometry allows rapid assessment and comparison of lactic acid bacteria viability after freezing and during frozen storage. Cryobiology, 2007, 55, 35-43.	0.3	80

CATHERINE BEAL

#	Article	IF	CITATIONS
19	Acidification improves cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1. Journal of Biotechnology, 2007, 128, 659-667.	1.9	37
20	Characterization of the Fermented Milk "Laban―with Sensory Analysis and Instrumental Measurements. Journal of Food Science, 2006, 71, S156.	1.5	13
21	Influence of cooling temperature and duration on cold adaptation of Lactobacillus acidophilus RD758. Cryobiology, 2005, 50, 294-307.	0.3	68
22	Improvement of cryopreservation of Lactobacillus delbrueckii subsp. bulgaricus CFL1 with additives displaying different protective effects. International Dairy Journal, 2003, 13, 917-926.	1.5	37
23	Operating Conditions That Affect the Resistance of Lactic Acid Bacteria to Freezing and Frozen Storage. Cryobiology, 2001, 43, 189-198.	0.3	96
24	Method of quantifying the loss of acidification activity of lactic acid starters during freezing and frozen storage. Journal of Dairy Research, 2000, 67, 83-90.	0.7	115
25	pH influences growth and plasmid stability of recombinant Lactococcus lactis subsp. lactis. Biotechnology Letters, 1998, 20, 679-682.	1.1	3
26	Static and dynamic neural network models for estimating biomass concentration during thermophilic lactic acid bacteria batch cultures. Journal of Bioscience and Bioengineering, 1998, 85, 615-622.	0.9	27
27	On-line indirect measurements of biological variables and their kinetics during pH controlled batch cultures of thermophilic lactic acid bacteria. Journal of Food Engineering, 1995, 26, 511-525.	2.7	6
28	On-line estimation of biological variables during pH controlled lactic acid fermentations. Biotechnology and Bioengineering, 1994, 44, 1168-1176.	1.7	16
29	Influence of dilution rate and cell immobilization on plasmid stability during continuous cultures of recombinant strains of Lactococcus lactis subsp. lactis. Journal of Biotechnology, 1994, 34, 87-95.	1.9	21
30	Comparison of growth, acidification and productivity of pure and mixed cultures of Streptococcus salivarius subsp. thermophilus 404 and Lactobacillus delbrueckii subsp. bulgaricus 398. Applied Microbiology and Biotechnology, 1994, 41, 95-98.	1.7	17
31	Viability and Acidification Activity of Pure and Mixed Starters of Streptococcus salivarius ssp. thermophilus 404 and Lactobacillus delbrueckii ssp. bulgaricus 398 at the Different Steps of Their Production. LWT - Food Science and Technology, 1994, 27, 86-92.	2.5	27
32	Influence of controlled pH and temperature on the growth and acidification of pure cultures of Streptococcus thermophilus 404 and Lactobacillus bulgaricus 398. Applied Microbiology and Biotechnology, 1989, 32, 148-154.	1.7	55