Bela Ozsvari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10551021/publications.pdf Version: 2024-02-01

RELA OZSVADI

#	Article	IF	CITATIONS
1	Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: Treating cancer like an infectious disease. Oncotarget, 2015, 6, 4569-4584.	0.8	401
2	Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis. Nature Genetics, 2008, 40, 78-82.	9.4	369
3	Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget, 2015, 6, 14777-14795.	0.8	225
4	Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via "differentiation-based nano-therapy― Oncotarget, 2015, 6, 3553-3562.	0.8	192
5	Mitochondrial mass, a new metabolic biomarker for stem-like cancer cells: Understanding WNT/FGF-driven anabolic signaling. Oncotarget, 2015, 6, 30453-30471.	0.8	113
6	Doxycycline down-regulates DNA-PK and radiosensitizes tumor initiating cells: Implications for more effective radiation therapy. Oncotarget, 2015, 6, 14005-14025.	0.8	103
7	Kinetic Analysis of the Toxicity of Pharmaceutical Excipients Cremophor EL and RH40 on Endothelial and Epithelial Cells. Journal of Pharmaceutical Sciences, 2013, 102, 1173-1181.	1.6	93
8	Azithromycin and Roxithromycin define a new family of "senolytic―drugs that target senescent human fibroblasts. Aging, 2018, 10, 3294-3307.	1.4	90
9	Trypsin Reduces Pancreatic Ductal Bicarbonate Secretion by Inhibiting CFTR Clâ^' Channels and Luminal Anion Exchangers. Gastroenterology, 2011, 141, 2228-2239.e6.	0.6	77
10	Targeting tumor-initiating cells: Eliminating anabolic cancer stem cells with inhibitors of protein synthesis or by mimicking caloric restriction. Oncotarget, 2015, 6, 4585-4601.	0.8	55
11	A mitochondrial based oncology platform for targeting cancer stem cells (CSCs): MITO-ONC-RX. Cell Cycle, 2018, 17, 2091-2100.	1.3	53
12	Targeting flavin-containing enzymes eliminates cancer stem cells (CSCs), by inhibiting mitochondrial respiration: Vitamin B2 (Riboflavin) in cancer therapy. Aging, 2017, 9, 2610-2628.	1.4	49
13	The effect of sucrose esters on a culture model of the nasal barrier. Toxicology in Vitro, 2012, 26, 445-454.	1.1	46
14	The Curcumin Analog C-150, Influencing NF-κB, UPR and Akt/Notch Pathways Has Potent Anticancer Activity In Vitro and In Vivo. PLoS ONE, 2016, 11, e0149832.	1.1	45
15	Targeting cancer stem cell propagation with palbociclib, a CDK4/6 inhibitor: Telomerase drives tumor cell heterogeneity. Oncotarget, 2017, 8, 9868-9884.	0.8	44
16	Sucrose Esters Increase Drug Penetration, But Do Not Inhibit Pâ€Clycoprotein in Cacoâ€2 Intestinal Epithelial Cells. Journal of Pharmaceutical Sciences, 2014, 103, 3107-3119.	1.6	41
17	Dissecting tumor metabolic heterogeneity: Telomerase and large cell size metabolically define a sub-population of stem-like, mitochondrial-rich, cancer cells. Oncotarget, 2015, 6, 21892-21905.	0.8	41
18	Retinoic acid and hydrocortisone strengthen the barrier function of human RPMI 2650 cells, a model for nasal epithelial permeability. Cytotechnology, 2013, 65, 395-406.	0.7	38

BELA OZSVARI

#	Article	IF	CITATIONS
19	Dodecyl-TPP Targets Mitochondria and Potently Eradicates Cancer Stem Cells (CSCs): Synergy With FDA-Approved Drugs and Natural Compounds (Vitamin C and Berberine). Frontiers in Oncology, 2019, 9, 615.	1.3	38
20	High ATP Production Fuels Cancer Drug Resistance and Metastasis: Implications for Mitochondrial ATP Depletion Therapy. Frontiers in Oncology, 2021, 11, 740720.	1.3	38
21	Mitoriboscins: Mitochondrial-based therapeutics targeting cancer stem cells (CSCs), bacteria and pathogenic yeast. Oncotarget, 2017, 8, 67457-67472.	0.8	36
22	Exploiting mitochondrial targeting signal(s), TPP and bis-TPP, for eradicating cancer stem cells (CSCs). Aging, 2018, 10, 229-240.	1.4	34
23	A cell-microelectronic sensing technique for the screening of cytoprotective compounds. International Journal of Molecular Medicine, 2010, 25, 525-30.	1.8	33
24	Mitoketoscins: Novel mitochondrial inhibitors for targeting ketone metabolism in cancer stem cells (CSCs). Oncotarget, 2017, 8, 78340-78350.	0.8	31
25	Compounds Blocking Methylglyoxal-induced Protein Modification and Brain Endothelial Injury. Archives of Medical Research, 2014, 45, 753-764.	1.5	29
26	Mannich Curcuminoids as Potent Anticancer Agents. Archiv Der Pharmazie, 2017, 350, e1700005.	2.1	23
27	A new mutation-independent approach to cancer therapy: Inhibiting oncogenic RAS and MYC, by targeting mitochondrial biogenesis. Aging, 2017, 9, 2098-2116.	1.4	21
28	Extracellular matrilin-2 deposition controls the myogenic program timing during muscle regeneration. Journal of Cell Science, 2014, 127, 3240-56.	1.2	19
29	Repurposing of FDA-approved drugs against cancer – focus on metastasis. Aging, 2016, 8, 567-568.	1.4	19
30	First-in-class candidate therapeutics that target mitochondria and effectively prevent cancer cell metastasis: mitoriboscins and TPP compounds. Aging, 2020, 12, 10162-10179.	1.4	19
31	Lipid droplet binding thalidomide analogs activate endoplasmic reticulum stress and suppress hepatocellular carcinoma in a chemically induced transgenic mouse model. Lipids in Health and Disease, 2013, 12, 175.	1.2	11
32	Mitochondrial and ribosomal biogenesis are new hallmarks of stemness, oncometabolism and biomass accumulation in cancer: Mitoâ€stemness and riboâ€stemness features. Aging, 2019, 11, 4801-4835.	1.4	10
33	Controversies in the Role of SLC26 Anion Exchangers in Pancreatic Ductal Bicarbonate Secretion. Pancreas, 2008, 37, 232-234.	0.5	9
34	Aromatic Sulfonamides Containing a Condensed Piperidine Moiety as Potential Oxidative Stress-Inducing Anticancer Agents. Medicinal Chemistry, 2013, 9, 911-919.	0.7	9
35	A Myristoyl Amide Derivative of Doxycycline Potently Targets Cancer Stem Cells (CSCs) and Prevents Spontaneous Metastasis, Without Retaining Antibiotic Activity. Frontiers in Oncology, 2020, 10, 1528.	1.3	8
36	The Guinea Pig Pancreas Secretes a Single Trypsinogen Isoform, Which Is Defective in Autoactivation. Pancreas, 2008, 37, 182-188.	0.5	7

#	Article	IF	CITATIONS
37	Extracellular deposition of matrilin-2 controls the timing of the myogenic program during muscle regeneration. Development (Cambridge), 2014, 141, e1606-e1606.	1.2	0