Artur Cavaco-Paulo

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1054984/artur-cavaco-paulo-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

346	10,890	57	87
papers	citations	h-index	g-index
371 ext. papers	12,229	4.9	6.47
	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
346	Chemical modification of lipases: A powerful tool for activity improvement <i>Biotechnology Journal</i> , 2022 , e2100523	5.6	O
345	Satureja montana Essential Oil, Zein Nanoparticles and Their Combination as a Biocontrol Strategy to Reduce Bacterial Spot Disease on Tomato Plants. <i>Horticulturae</i> , 2021 , 7, 584	2.5	1
344	Mapping hair follicle-targeted delivery by particle systems: What has science accomplished so far?. <i>International Journal of Pharmaceutics</i> , 2021 , 610, 121273	6.5	4
343	Cellulose Dissolved in Ionic Liquids for Modification of the Shape of Keratin Fibers. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 4102-4110	8.3	5
342	Hair resistance to mechanical wear. <i>Wear</i> , 2021 , 470-471, 203612	3.5	О
341	Design of liposomes as drug delivery system for therapeutic applications. <i>International Journal of Pharmaceutics</i> , 2021 , 601, 120571	6.5	81
340	Proteins as Hair Styling Agents. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 4245	2.6	1
339	Comparing the delivery to the hair bulb of two fluorescent molecules of distinct hydrophilicities by different nanoparticles and a serum formulation. <i>International Journal of Pharmaceutics</i> , 2021 , 602, 12	0653	1
338	Laccase-catalyzed cross-linking of BSA mediated by tyrosine. <i>International Journal of Biological Macromolecules</i> , 2021 , 166, 798-805	7.9	7
337	Ohmic heating as a new tool for protein scaffold engineering. <i>Materials Science and Engineering C</i> , 2021 , 120, 111784	8.3	2
336	Biotechnological applications of mammalian odorant-binding proteins. <i>Critical Reviews in Biotechnology</i> , 2021 , 41, 441-455	9.4	5
335	Chemically Modified Lipase from Thermomyces lanuginosus with Enhanced Esterification and Transesterification Activities. <i>ChemCatChem</i> , 2021 , 13, 4524	5.2	1
334	Effect of ultrasound on protein functionality. <i>Ultrasonics Sonochemistry</i> , 2021 , 76, 105653	8.9	13
333	Changing the shape of wool yarns via laccase-mediated grafting of tyrosine. <i>Journal of Biotechnology</i> , 2021 , 339, 73-80	3.7	2
332	Production of antimicrobial powders of guaiacol oligomers by a laccase-catalyzed synthesis reaction. <i>Process Biochemistry</i> , 2021 , 111, 213-220	4.8	2
331	Carboxymethyl Cellulose (CMC) as a Template for Laccase-Assisted Oxidation of Aniline. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 438	5.8	6
330	Zein impart hydrophobic and antimicrobial properties to cotton textiles. <i>Reactive and Functional Polymers</i> , 2020 , 154, 104664	4.6	9

(2019-2020)

329	Cyclosporin A-loaded poly(d,l-lactide) nanoparticles: a promising tool for treating alopecia. <i>Nanomedicine</i> , 2020 , 15, 1459-1469	5.6	4
328	Stratum corneum lipid matrix with unusual packing: A molecular dynamics study. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 190, 110928	6	8
327	Ohmic heating as an innovative approach for the production of keratin films. <i>International Journal of Biological Macromolecules</i> , 2020 , 150, 671-680	7.9	8
326	Antimicrobial Properties of Composites of Chitosan-Silver Doped Zeolites. <i>Journal of Nanoscience and Nanotechnology</i> , 2020 , 20, 6295-6304	1.3	O
325	Poloxamer 407 based-nanoparticles for controlled release of methotrexate. <i>International Journal of Pharmaceutics</i> , 2020 , 575, 118924	6.5	6
324	Substrate hydrophobicity and enzyme modifiers play a major role in the activity of lipase from Thermomyces lanuginosus. <i>Catalysis Science and Technology</i> , 2020 , 10, 5913-5924	5.5	5
323	Echymotrypsin catalyses the synthesis of methotrexate oligomers. <i>Process Biochemistry</i> , 2020 , 98, 193-2	2 0,1 8	3
322	Increased Encapsulation Efficiency of Methotrexate in Liposomes for Rheumatoid Arthritis Therapy. <i>Biomedicines</i> , 2020 , 8,	4.8	9
321	Improvement of bacterial cellulose nonwoven fabrics by physical entrapment of lauryl gallate oligomers. <i>Textile Reseach Journal</i> , 2020 , 90, 166-178	1.7	9
320	Effect of Additives on the Laccase-Catalyzed Polymerization of Aniline Onto Bacterial Cellulose. <i>Frontiers in Bioengineering and Biotechnology</i> , 2019 , 7, 264	5.8	5
319	PTS micelles for the delivery of hydrophobic methotrexate. <i>International Journal of Pharmaceutics</i> , 2019 , 566, 282-290	6.5	5
318	Conductive bacterial cellulose by in situ laccase polymerization of aniline. <i>PLoS ONE</i> , 2019 , 14, e021454	63.7	13
317	Catalytic Activation of Esterases by PEGylation for Polyester Synthesis. ChemCatChem, 2019, 11, 2490-2	24929	6
316	Design of a chromogenic substrate for elastase based on split GFP system-Proof of concept for colour switch sensors. <i>Biotechnology Reports (Amsterdam, Netherlands)</i> , 2019 , 22, e00324	5.3	1
315	Electrostatics of Tau Protein by Molecular Dynamics. <i>Biomolecules</i> , 2019 , 9,	5.9	14
314	Quantification of drugs encapsulated in liposomes by H NMR. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 179, 414-420	6	12
313	Can Laccase-Assisted Processing Conditions Influence the Structure of the Reaction Products?. <i>Trends in Biotechnology</i> , 2019 , 37, 683-686	15.1	9
312	Strategies for the synthesis of fluorinated polyesters <i>RSC Advances</i> , 2019 , 9, 1799-1806	3.7	3

311	Release of Fragrances from Cotton Functionalized with Carbohydrate-Binding Module Proteins. <i>ACS Applied Materials & ACS ACS Applied Materials & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	12
310	Enzyme stabilization for biotechnological applications 2019 , 107-131		2
309	Biosynthesis of polyesters and their application on cellulosic fibers 2019 , 49-75		2
308	Echymotrypsin catalysed oligopeptide synthesis for hair modelling. <i>Journal of Cleaner Production</i> , 2019 , 237, 117743	10.3	1
307	Ultrasound-Assisted Encapsulation of Sacha Inchi (Linneo.) Oil in Alginate-Chitosan Nanoparticles. <i>Polymers</i> , 2019 , 11,	4.5	9
306	Fusion proteins with chromogenic and keratin binding modules. <i>Scientific Reports</i> , 2019 , 9, 14044	4.9	6
305	Crystallin Fusion Proteins Improve the Thermal Properties of Hair. <i>Frontiers in Bioengineering and Biotechnology</i> , 2019 , 7, 298	5.8	5
304	Polymeric Hydrogel Coating for Modulating the Shape of Keratin Fiber. <i>Frontiers in Chemistry</i> , 2019 , 7, 749	5	5
303	Polymeric Electrospun Fibrous Dressings for Topical Co-delivery of Acyclovir and Omega-3 Fatty Acids. <i>Frontiers in Bioengineering and Biotechnology</i> , 2019 , 7, 390	5.8	10
302	Protective Effect of Saccharides on Freeze-Dried Liposomes Encapsulating Drugs. <i>Frontiers in Bioengineering and Biotechnology</i> , 2019 , 7, 424	5.8	17
301	Coloured and low conductive fabrics by in situ laccase-catalysed polymerization. <i>Process Biochemistry</i> , 2019 , 77, 77-84	4.8	9
300	Antimicrobial coating of textiles by laccase in situ polymerization of catechol and p-phenylenediamine. <i>Reactive and Functional Polymers</i> , 2019 , 136, 25-33	4.6	17
299	BSA/ASN/Pol407 nanoparticles for acute lymphoblastic leukemia treatment. <i>Biochemical Engineering Journal</i> , 2019 , 141, 80-88	4.2	2
298	Ih-situllipase-catalyzed cotton coating with polyesters from ethylene glycol and glycerol. <i>Process Biochemistry</i> , 2018 , 66, 82-88	4.8	9
297	Absence of Albumin Improves in Vitro Cellular Uptake and Disruption of Poloxamer 407-Based Nanoparticles inside Cancer Cells. <i>Molecular Pharmaceutics</i> , 2018 , 15, 527-535	5.6	9
296	Bio-coloration of bacterial cellulose assisted by immobilized laccase. <i>AMB Express</i> , 2018 , 8, 19	4.1	22
295	Enzymatic modification of jute fabrics for enhancing the reinforcement in jute/PP composites. Journal of Thermoplastic Composite Materials, 2018 , 31, 483-499	1.9	13
294	Laccase: a green catalyst for the biosynthesis of poly-phenols. <i>Critical Reviews in Biotechnology</i> , 2018 , 38, 294-307	9.4	80

(2018-2018)

293	Changes on Content, Structure and Surface Distribution of Lignin in Jute Fibers After Laccase Treatment. <i>Journal of Natural Fibers</i> , 2018 , 15, 384-395	1.8	8
292	Fab antibody fragment-functionalized liposomes for specific targeting of antigen-positive cells. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2018 , 14, 123-130	6	28
291	Keratin-based particles for protection and restoration of hair properties. <i>International Journal of Cosmetic Science</i> , 2018 , 40, 408-419	2.7	8
2 90	1-Aminoanthracene Transduction into Liposomes Driven by Odorant-Binding Protein Proximity. <i>ACS Applied Materials & Driven State Communication (No. 27531-27539)</i>	9.5	4
289	Extracellular Purine Metabolism Is the Switchboard of Immunosuppressive Macrophages and a Novel Target to Treat Diseases With Macrophage Imbalances. <i>Frontiers in Immunology</i> , 2018 , 9, 852	8.4	19
288	Enzymatic polymerization of catechol under high-pressure homogenization for the green coloration of textiles. <i>Journal of Cleaner Production</i> , 2018 , 202, 792-798	10.3	14
287	Ultrasound-assisted extraction of hemicellulose and phenolic compounds from bamboo bast fiber powder. <i>PLoS ONE</i> , 2018 , 13, e0197537	3.7	11
286	OBP fused with cell-penetrating peptides promotes liposomal transduction. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 161, 645-653	6	12
285	Practical insights on enzyme stabilization. <i>Critical Reviews in Biotechnology</i> , 2018 , 38, 335-350	9.4	110
284	Ultrasound-assisted lipase catalyzed hydrolysis of aspirin methyl ester. <i>Ultrasonics Sonochemistry</i> , 2018 , 40, 587-593	8.9	13
283	Conductive Cotton by In Situ Laccase-Polymerization of Aniline. <i>Polymers</i> , 2018 , 10,	4.5	12
282	The influence of the morphological characteristics of nanoporous anodic aluminium oxide (AAO) structures on capacitive touch sensor performance: a biological application <i>RSC Advances</i> , 2018 , 8, 372	2 <i>5</i> 4 ⁷ 37	2 <i>र्वे</i> 6
281	Internalization of Methotrexate Conjugates by Folate Receptor-Biochemistry, 2018, 57, 6780-6786	3.2	8
2 80	Polymers from Bamboo Extracts Produced by Laccase. <i>Polymers</i> , 2018 , 10,	4.5	6
279	Exploring PEGylated and immobilized laccases for catechol polymerization. AMB Express, 2018, 8, 134	4.1	12
278	Two Engineered OBPs with opposite temperature-dependent affinities towards 1-aminoanthracene. <i>Scientific Reports</i> , 2018 , 8, 14844	4.9	5
277	Humidity Induces Changes in the Dimensions of Hydrogel-Coated Wool Yarns. <i>Polymers</i> , 2018 , 10,	4.5	6
276	Ultrasound-assisted biosynthesis of novel methotrexate-conjugates. <i>Ultrasonics Sonochemistry</i> , 2018 , 48, 51-56	8.9	13

275	The effect of high-energy environments on the structure of laccase-polymerized poly(catechol). <i>Ultrasonics Sonochemistry</i> , 2018 , 48, 275-280	8.9	17
274	Therapeutic l-asparaginase: upstream, downstream and beyond. <i>Critical Reviews in Biotechnology</i> , 2017 , 37, 82-99	9.4	77
273	Enzyme-mediated surface modification of jute and its influence on the properties of jute/epoxy composites. <i>Polymer Composites</i> , 2017 , 38, 1327-1334	3	9
272	Preparation and rheological properties of starch- g -poly(butyl acrylate) catalyzed by horseradish peroxidase. <i>Process Biochemistry</i> , 2017 , 59, 104-110	4.8	23
271	Permeation of skin with (C) fullerene dispersions. <i>Engineering in Life Sciences</i> , 2017 , 17, 732-738	3.4	5
270	Hydrophobic functionalization of jute fabrics by enzymatic-assisted grafting of vinyl copolymers. New Journal of Chemistry, 2017, 41, 3773-3780	3.6	13
269	Antioxidant cosmetotextiles: Cotton coating with nanoparticles containing vitamin E. <i>Process Biochemistry</i> , 2017 , 59, 46-51	4.8	20
268	Neutral PEGylated liposomal formulation for efficient folate-mediated delivery of MCL1 siRNA to activated macrophages. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 155, 459-465	6	16
267	PEGylation Greatly Enhances Laccase Polymerase Activity. <i>ChemCatChem</i> , 2017 , 9, 3888-3894	5.2	15
266	Lipase-ultrasound assisted synthesis of polyesters. <i>Ultrasonics Sonochemistry</i> , 2017 , 38, 496-502	8.9	28
265	Peptide-protein interactions within human hair keratins. <i>International Journal of Biological Macromolecules</i> , 2017 , 101, 805-814	7.9	7
264	Modulating antioxidant activity and the controlled release capability of laccase mediated catechin grafting of chitosan. <i>Process Biochemistry</i> , 2017 , 59, 65-76	4.8	12
263	Ultrasound-assisted swelling of bacterial cellulose. <i>Engineering in Life Sciences</i> , 2017 , 17, 1108-1117	3.4	17
262	Oil-based cyclo-oligosaccharide nanodevices for drug encapsulation. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 159, 259-267	6	3
261	Effect of a peptide in cosmetic formulations for hair volume control. <i>International Journal of Cosmetic Science</i> , 2017 , 39, 600-609	2.7	6
260	Changing the shape of hair with keratin peptides. <i>RSC Advances</i> , 2017 , 7, 51581-51592	3.7	27
259	Protein-based nanoformulations for \(\text{Hocopherol encapsulation.} \) Engineering in Life Sciences, \(\text{2017}, \) 17, 523-527	3.4	5
258	Detection of human neutrophil elastase (HNE) on wound dressings as marker of inflammation. <i>Applied Microbiology and Biotechnology</i> , 2017 , 101, 1443-1454	5.7	15

(2016-2017)

257	Silk-based biomaterials functionalized with fibronectin type II promotes cell adhesion. <i>Acta Biomaterialia</i> , 2017 , 47, 50-59	10.8	20	
256	Enzymatic coating of cotton with poly (ethylene glutarate). <i>Process Biochemistry</i> , 2017 , 59, 91-96	4.8	6	
255	Jute hydrophobization via laccase-catalyzed grafting of fluorophenol and fluoroamine. <i>RSC Advances</i> , 2016 , 6, 90427-90434	3.7	12	
254	Fluorescent quantification of melanin. Pigment Cell and Melanoma Research, 2016, 29, 707-712	4.5	25	
253	Albumin/asparaginase capsules prepared by ultrasound to retain ammonia. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 9499-9508	5.7	5	
252	BSA/HSA ratio modulates the properties of Ca(2+)-induced cold gelation scaffolds. <i>International Journal of Biological Macromolecules</i> , 2016 , 89, 535-44	7.9	4	
251	Counter ions and constituents combination affect DODAX : MO nanocarriers toxicity and. <i>Toxicology Research</i> , 2016 , 5, 1244-1255	2.6	6	
250	Assessment of penetration of Ascorbyl Tetraisopalmitate into biological membranes by molecular dynamics. <i>Computers in Biology and Medicine</i> , 2016 , 75, 151-9	7	9	
249	Preparation of functionalized cotton based on laccase-catalyzed synthesis of polyaniline in perfluorooctanesulfonate acid potassium salt (PFOS) template. <i>RSC Advances</i> , 2016 , 6, 49272-49280	3.7	11	
248	A biologically active delivery material with dried-rehydrated vesicles containing the anti-inflammatory diclofenac for potential wound healing. <i>Journal of Liposome Research</i> , 2016 , 26, 269-	7 ^{6.1}	7	
247	Protein Formulations for Emulsions and Solid-in-Oil Dispersions. <i>Trends in Biotechnology</i> , 2016 , 34, 496-	·5 0 51	13	
246	Enzymatic Hydrophobic Modification of Jute Fibers via Grafting to Reinforce Composites. <i>Applied Biochemistry and Biotechnology</i> , 2016 , 178, 1612-29	3.2	18	
245	Enzymatic coating of jute fabrics for enhancing anti-ultraviolent properties via in-situ polymerization of polyhydric phenols. <i>Journal of Industrial Textiles</i> , 2016 , 46, 160-176	1.6	5	
244	Ultrasound enhances lipase-catalyzed synthesis of poly (ethylene glutarate). <i>Ultrasonics Sonochemistry</i> , 2016 , 31, 506-11	8.9	37	
243	Enzymatic phosphorylation of hair keratin enhances fast adsorption of cationic moieties. <i>International Journal of Biological Macromolecules</i> , 2016 , 85, 476-86	7.9	7	
242	Folate-targeted nanoparticles for rheumatoid arthritis therapy. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2016 , 12, 1113-1126	6	84	
241	Synthesis and characterization of starch-poly(methyl acrylate) graft copolymers using horseradish peroxidase. <i>Carbohydrate Polymers</i> , 2016 , 136, 1010-6	10.3	43	
240	Assessment of liposome disruption to quantify drug delivery in vitro. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2016 , 1858, 163-7	3.8	5	

Update on Therapeutic Approaches for Rheumatoid Arthritis. Current Medicinal Chemistry, 2016, 23, 219Q-303 17 239 Enzymatic hydrophobization of jute fabrics and its effect on the mechanical and interfacial 238 12 3.4 properties of jute/PP composites. EXPRESS Polymer Letters, 2016, 10, 420-429 Enzymatic Treatments to Improve Mechanical Properties and Surface Hydrophobicity of Jute Fiber 237 1.3 5 Membranes. BioResources, 2016, 11, 236 Albumin-Based Nanodevices as Drug Carriers. Current Pharmaceutical Design, 2016, 22, 1371-90 84 3.3 Human Hair and the Impact of Cosmetic Procedures: A Review on Cleansing and Shape-Modulating 235 2.7 30 Cosmetics. Cosmetics, 2016, 3, 26 Laccase-catalyzed synthesis of conducting polyaniline-lignosulfonate composite. Journal of Applied 2.9 234 Polymer Science, 2016, 133, n/a-n/a In vitro phosphorylation as tool for modification of silk and keratin fibrous materials. Applied 233 5.7 3 Microbiology and Biotechnology, **2016**, 100, 4337-45 Insights on the mechanical behavior of keratin fibrils. International Journal of Biological 232 9 7.9 Macromolecules, 2016, 89, 477-83 Antimicrobial lubricant formulations containing poly(hydroxybenzene)-trimethoprim conjugates 231 5.7 synthesized by tyrosinase. Applied Microbiology and Biotechnology, 2015, 99, 4225-35 Enzymatic synthesis of poly(catechin)-antibiotic conjugates: an antimicrobial approach for 230 5.7 13 indwelling catheters. Applied Microbiology and Biotechnology, 2015, 99, 637-51 Folic acid-tagged protein nanoemulsions loaded with CORM-2 enhance the survival of mice bearing subcutaneous A20 lymphoma tumors. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 229 6 25 11, 1077-83 Peptide Anchor for Folate-Targeted Liposomal Delivery. Biomacromolecules, 2015, 16, 2904-10 228 6.9 Ultrasound intensification suppresses the need of methanol excess during the biodiesel production 8.9 48 227 with Lipozyme TL-IM. Ultrasonics Sonochemistry, 2015, 27, 530-535 Size controlled protein nanoemulsions for active targeting of folate receptor positive cells. Colloids 6 226 22 and Surfaces B: Biointerfaces, 2015, 135, 90-98 HRP-mediated polyacrylamide graft modification of raw jute fabric. Journal of Molecular Catalysis B: 225 23 Enzymatic, **2015**, 116, 29-38 224 Orange IV stabilizes silk fibroin microemulsions. Engineering in Life Sciences, 2015, 15, 400-409 3.4 Hair Coloration by Gene Regulation: Fact or Fiction?. Trends in Biotechnology, 2015, 33, 707-711 223 15.1 9 Enhancing Methotrexate Tolerance with Folate Tagged Liposomes in Arthritic Mice. Journal of 222 4 45 Biomedical Nanotechnology, 2015, 11, 2243-52

221	Improved Poly (D,L-lactide) nanoparticles-based formulation for hair follicle targeting. <i>International Journal of Cosmetic Science</i> , 2015 , 37, 282-90	2.7	12
220	Design of liposomal formulations for cell targeting. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 136, 514	4 <i>6</i> 26	91
219	Enzymatic processing of protein-based fibers. Applied Microbiology and Biotechnology, 2015, 99, 10387-9	9 3 .7	31
218	Jute/polypropylene composites: Effect of enzymatic modification on thermo-mechanical and dynamic mechanical properties. <i>Fibers and Polymers</i> , 2015 , 16, 2276-2283	2	16
217	Ultrasound enhanced laccase applications. <i>Green Chemistry</i> , 2015 , 17, 1362-1374	10	42
216	Phosphorylated silk fibroin matrix for methotrexate release. <i>Molecular Pharmaceutics</i> , 2015 , 12, 75-86	5.6	7
215	Functionalized protein nanoemulsions by incorporation of chemically modified BSA. <i>RSC Advances</i> , 2015 , 5, 4976-4983	3.7	17
214	Stabilization of enzymes in micro-emulsions for ultrasound processes. <i>Biochemical Engineering Journal</i> , 2015 , 93, 115-118	4.2	10
213	On the Routines of Wild-Type Silk Fibroin Processing Toward Silk-Inspired Materials: A Review. <i>Macromolecular Materials and Engineering</i> , 2015 , 300, 1199-1216	3.9	31
212	Exposure Assessment Based Recommendations to Improve Nanosafety at Nanoliposome Production Sites. <i>Journal of Nanomaterials</i> , 2015 , 2015, 1-10	3.2	9
211	Hydrophobic surface functionalization of lignocellulosic jute fabrics by enzymatic grafting of octadecylamine. <i>International Journal of Biological Macromolecules</i> , 2015 , 79, 353-62	7.9	36
210	Development of elastin-like recombinamer films with antimicrobial activity. <i>Biomacromolecules</i> , 2015 , 16, 625-35	6.9	24
209	The effects of solvent composition on the affinity of a peptide towards hair keratin: experimental and molecular dynamics data. <i>RSC Advances</i> , 2015 , 5, 12365-12371	3.7	11
208	Assessment of a Protease Inhibitor Peptide for Anti-Ageing. <i>Protein and Peptide Letters</i> , 2015 , 22, 1041-	· 9 1.9	3
207	Odorant binding proteins: a biotechnological tool for odour control. <i>Applied Microbiology and Biotechnology</i> , 2014 , 98, 3629-38	5.7	16
206	Protein micro- and nano-capsules for biomedical applications. Chemical Society Reviews, 2014, 43, 1361-	7 58.5	90
205	Sonochemically-induced spectral shift as a probe of green fluorescent protein release from nano capsules. <i>RSC Advances</i> , 2014 , 4, 10303-10309	3.7	1
204	Phosphorylation of silk fibroins improves the cytocompatibility of silk fibroin derived materials: a platform for the production of tuneable material. <i>Biotechnology Journal</i> , 2014 , 9, 1267-78	5.6	7

203	Conductive cotton prepared by polyaniline in situ polymerization using laccase. <i>Applied Biochemistry and Biotechnology</i> , 2014 , 174, 820-31	3.2	24
202	Design of novel BSA/hyaluronic acid nanodispersions for transdermal pharma purposes. <i>Molecular Pharmaceutics</i> , 2014 , 11, 1479-88	5.6	18
201	Ultrasonic pilot-scale reactor for enzymatic bleaching of cotton fabrics. <i>Ultrasonics Sonochemistry</i> , 2014 , 21, 1535-43	8.9	31
200	Laccase coating of catheters with poly(catechin) for biofilm reduction. <i>Biocatalysis and Biotransformation</i> , 2014 , 32, 2-12	2.5	8
199	Sonochemical and hydrodynamic cavitation reactors for laccase/hydrogen peroxide cotton bleaching. <i>Ultrasonics Sonochemistry</i> , 2014 , 21, 774-81	8.9	27
198	The Immobilization of Polyethylene Imine Nano and Microspheres on Glass Using High Intensity Ultrasound. <i>International Journal of Applied Ceramic Technology</i> , 2013 , 10, E267-E273	2	
197	Characterization of ligno-cellulosic materials bleached with oxo-diperoxo-molybdates. <i>Carbohydrate Polymers</i> , 2013 , 98, 490-4	10.3	2
196	In vitro and computational studies of transdermal perfusion of nanoformulations containing a large molecular weight protein. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 108, 271-8	6	22
195	Functionalization of gauzes with liposomes entrapping an anti-inflammatory drug: A strategy to improve wound healing. <i>Reactive and Functional Polymers</i> , 2013 , 73, 1328-1334	4.6	21
194	Proteinaceous microspheres for targeted RNA delivery prepared by an ultrasonic emulsification method. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 82-90	7.3	14
193	Potential of human D -crystallin for hair damage repair: insights into the mechanical properties and biocompatibility. <i>International Journal of Cosmetic Science</i> , 2013 , 35, 458-66	2.7	14
192	Keratins and lipids in ethnic hair. International Journal of Cosmetic Science, 2013, 35, 244-9	2.7	33
191	Enzymatic synthesis of antibody-human serum albumin conjugate for targeted drug delivery using tyrosinase from Agaricus bisporus. <i>RSC Advances</i> , 2013 , 3, 1460-1467	3.7	14
190	Liposome and protein based stealth nanoparticles. <i>Faraday Discussions</i> , 2013 , 166, 417-29	3.6	24
189	Chitosan-lignosulfonates sono-chemically prepared nanoparticles: characterisation and potential applications. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 103, 1-8	6	61
188	HSA nanocapsules functionalized with monoclonal antibodies for targeted drug delivery. <i>International Journal of Pharmaceutics</i> , 2013 , 458, 1-8	6.5	11
187	The activity of LE10 peptide on biological membranes using molecular dynamics, in vitro and in vivo studies. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 106, 240-7	6	6
186	Lipases efficiently stearate and cutinases acetylate the surface of arabinoxylan films. <i>Journal of Biotechnology</i> , 2013 , 167, 16-23	3.7	9

(2012-2013)

185	Nonionic surfactants and dispersants for biopolishing and stonewashing with Hypocrea jecorina cellulases. <i>Coloration Technology</i> , 2013 , 129, 49-54	2	8	
184	In vitro induction of melanin synthesis and extrusion by tamoxifen. <i>International Journal of Cosmetic Science</i> , 2013 , 35, 368-74	2.7	6	
183	NMR and molecular modelling studies on elastase inhibitor-peptides for wound management. <i>Reactive and Functional Polymers</i> , 2013 , 73, 1357-1365	4.6	6	
182	Direct enzymatic esterification of cotton and Avicel with wild-type and engineered cutinases. <i>Cellulose</i> , 2013 , 20, 409-416	5.5	9	
181	Production of heterologous cutinases by E. coli and improved enzyme formulation for application on plastic degradation. <i>Electronic Journal of Biotechnology</i> , 2013 , 16,	3.1	7	
180	The use of keratin in biomedical applications. <i>Current Drug Targets</i> , 2013 , 14, 612-9	3	76	
179	Folic acid-functionalized human serum albumin nanocapsules for targeted drug delivery to chronically activated macrophages. <i>International Journal of Pharmaceutics</i> , 2012 , 427, 460-6	6.5	66	
178	Characterization of potential elastase inhibitor-peptides regulated by a molecular switch for wound dressings applications. <i>Enzyme and Microbial Technology</i> , 2012 , 50, 107-14	3.8	12	
177	Fragrance release profile from sonochemically prepared protein microsphere containers. <i>Ultrasonics Sonochemistry</i> , 2012 , 19, 858-63	8.9	32	
176	Keratin-based peptide: biological evaluation and strengthening properties on relaxed hair. <i>International Journal of Cosmetic Science</i> , 2012 , 34, 338-46	2.7	16	
175	Sonochemical coating of cotton and polyester fabrics with "antibacterial" BSA and casein spheres. <i>Chemistry - A European Journal</i> , 2012 , 18, 365-9	4.8	27	
174	Laccase-catalysed protein-flavonoid conjugates for flax fibre modification. <i>Applied Microbiology and Biotechnology</i> , 2012 , 93, 585-600	5.7	50	
173	Wound-healing evaluation of entrapped active agents into protein microspheres over cellulosic gauzes. <i>Biotechnology Journal</i> , 2012 , 7, 1376-85	5.6	9	
172	Influence of secretory leukocyte protease inhibitor-based peptides on elastase activity and their incorporation in hyaluronic acid hydrogels for chronic wound therapy. <i>Biopolymers</i> , 2012 , 98, 576-90	2.2	7	
171	Protein disulphide isomerase-induced refolding of sonochemically prepared Ribonuclease A microspheres. <i>Journal of Biotechnology</i> , 2012 , 159, 78-82	3.7	3	
170	Molecular recognition of esterase plays a major role on the removal of fatty soils during detergency. <i>Journal of Biotechnology</i> , 2012 , 161, 228-34	3.7	5	
169	Non-toxic sonochemical synthesis of surface functionalized human serum albumin nanocapsules for targeted drug delivery. <i>New Biotechnology</i> , 2012 , 29, S228	6.4		
168	Bio-processing of bamboo fibres for textile applications: a mini review. <i>Biocatalysis and Biotransformation</i> , 2012 , 30, 141-153	2.5	19	

167	Protein disulphide isomerase-mediated grafting of cysteine-containing peptides onto over-bleached hair. <i>Biocatalysis and Biotransformation</i> , 2012 , 30, 10-19	2.5	22
166	Enzymatic colouration with laccase and peroxidases: Recent progress. <i>Biocatalysis and Biotransformation</i> , 2012 , 30, 125-140	2.5	26
165	Insights on the mechanism of formation of protein microspheres in a biphasic system. <i>Molecular Pharmaceutics</i> , 2012 , 9, 3079-88	5.6	36
164	Novel silk fibroin/elastin wound dressings. <i>Acta Biomaterialia</i> , 2012 , 8, 3049-60	10.8	185
163	Developing scaffolds for tissue engineering using the Ca2+-induced cold gelation by an experimental design approach. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2012 , 100, 2269-78	3.5	9
162	Releasing dye encapsulated in proteinaceous microspheres on conductive fabrics by electric current. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 2926-30	9.5	11
161	Bamboo fibre processing: insights into hemicellulase and cellulase substrate accessibility. <i>Biocatalysis and Biotransformation</i> , 2012 , 30, 27-37	2.5	10
160	Sonochemical proteinaceous microspheres for wound healing. <i>Advances in Experimental Medicine and Biology</i> , 2012 , 733, 155-64	3.6	10
159	Molecular modeling of hair keratin/peptide complex: Using MM-PBSA calculations to describe experimental binding results. <i>Proteins: Structure, Function and Bioinformatics</i> , 2012 , 80, 1409-17	4.2	13
158	Treatment of cotton with an alkaline Bacillus spp cellulase: activity towards crystalline cellulose. <i>Biotechnology Journal</i> , 2012 , 7, 275-83	5.6	4
157	Protein microspheres as suitable devices for piroxicam release. <i>Colloids and Surfaces B: Biointerfaces</i> , 2012 , 92, 277-85	6	27
156	Effects of adsorption properties and mechanical agitation of two detergent cellulases towards cotton cellulose. <i>Biocatalysis and Biotransformation</i> , 2012 , 30, 260-271	2.5	5
155	Decolourization of paprika dye effluent with hydrogen peroxide produced by glucose oxidase. <i>Biocatalysis and Biotransformation</i> , 2012 , 30, 255-259	2.5	1
154	Hydroxylation of polypropylene using the monooxygenase mutant 139-3 from Bacillus megaterium BM3. <i>Biocatalysis and Biotransformation</i> , 2012 , 30, 57-62	2.5	1
153	Protein disulphide isomerase-assisted functionalization of proteinaceous substrates. <i>Biocatalysis and Biotransformation</i> , 2012 , 30, 111-124	2.5	3
152	Tailoring elastase inhibition with synthetic peptides. European Journal of Pharmacology, 2011, 666, 53-	60 5.3	10
151	Engineered Thermobifida fusca cutinase with increased activity on polyester substrates. <i>Biotechnology Journal</i> , 2011 , 6, 1230-9	5.6	90
150	Changes in the bacterial community structure and diversity during bamboo retting. <i>Biotechnology Journal</i> , 2011 , 6, 1262-71	5.6	7

149	In situ laccase-assisted overdyeing of denim using flavonoids. <i>Biotechnology Journal</i> , 2011 , 6, 1272-9	5.6	21
148	Polyoxometalate/laccase-mediated oxidative polymerization of catechol for textile dyeing. <i>Applied Microbiology and Biotechnology</i> , 2011 , 89, 981-7	5.7	35
147	Wound dressings for a proteolytic-rich environment. <i>Applied Microbiology and Biotechnology</i> , 2011 , 90, 445-60	5.7	79
146	Protein disulphide isomerase-assisted functionalization of keratin-based matrices. <i>Applied Microbiology and Biotechnology</i> , 2011 , 90, 1311-21	5.7	9
145	Encapsulation of RNA Molecules in BSA Microspheres and Internalization into Trypanosoma Brucei Parasites and Human U2OS Cancer Cells. <i>Advanced Functional Materials</i> , 2011 , 21, 3659-3666	15.6	28
144	Biology of human hair: know your hair to control it. <i>Advances in Biochemical Engineering/Biotechnology</i> , 2011 , 125, 121-43	1.7	6
143	Enzymatic Surface Hydrolysis of PET: Effect of Structural Diversity on Kinetic Properties of Cutinases from Thermobifida. <i>Macromolecules</i> , 2011 , 44, 4632-4640	5.5	205
142	Sonoproduction of liposomes and protein particles as templates for delivery purposes. <i>Biomacromolecules</i> , 2011 , 12, 3353-68	6.9	32
141	Antimicrobial and antioxidant linen via laccase-assisted grafting. <i>Reactive and Functional Polymers</i> , 2011 , 71, 713-720	4.6	62
140	Design and engineering of novel enzymes for textile applications 2010 , 3-31		1
140	Design and engineering of novel enzymes for textile applications 2010 , 3-31 Characterization of Thermobifida fusca Cutinase-Carbohydrate-Binding Module Fusion Proteins and Their Potential Application in Bioscouring. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 7896-	-7 8 96	4
	Characterization of Thermobifida fusca Cutinase-Carbohydrate-Binding Module Fusion Proteins	-7 <mark>8</mark> 96 4.8	
139	Characterization of Thermobifida fusca Cutinase-Carbohydrate-Binding Module Fusion Proteins and Their Potential Application in Bioscouring. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 7896-Characterization of Thermobifida fusca cutinase-carbohydrate-binding module fusion proteins and		4
139	Characterization of Thermobifida fusca Cutinase-Carbohydrate-Binding Module Fusion Proteins and Their Potential Application in Bioscouring. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 7896-Characterization of Thermobifida fusca cutinase-carbohydrate-binding module fusion proteins and their potential application in bioscouring. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 6870-6	4.8	4 35
139 138 137	Characterization of Thermobifida fusca Cutinase-Carbohydrate-Binding Module Fusion Proteins and Their Potential Application in Bioscouring. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 7896-Characterization of Thermobifida fusca cutinase-carbohydrate-binding module fusion proteins and their potential application in bioscouring. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 6870-6 Hydrolysis of Cutin by PET-Hydrolases. <i>Macromolecular Symposia</i> , 2010 , 296, 342-346 Enzymatic hydrolysis and modification of core polymer fibres for textile and other applications	4.8	4 35 12
139 138 137	Characterization of Thermobifida fusca Cutinase-Carbohydrate-Binding Module Fusion Proteins and Their Potential Application in Bioscouring. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 7896-Characterization of Thermobifida fusca cutinase-carbohydrate-binding module fusion proteins and their potential application in bioscouring. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 6870-6 Hydrolysis of Cutin by PET-Hydrolases. <i>Macromolecular Symposia</i> , 2010 , 296, 342-346 Enzymatic hydrolysis and modification of core polymer fibres for textile and other applications 2010 , 77-97 Biosensors Based on Laccase for Detection of Commercially Reactive Dyes. <i>Analytical Letters</i> , 2010 ,	4.8 0.8	4 35 12 6
139 138 137 136	Characterization of Thermobifida fusca Cutinase-Carbohydrate-Binding Module Fusion Proteins and Their Potential Application in Bioscouring. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 7896-Characterization of Thermobifida fusca cutinase-carbohydrate-binding module fusion proteins and their potential application in bioscouring. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 6870-6 Hydrolysis of Cutin by PET-Hydrolases. <i>Macromolecular Symposia</i> , 2010 , 296, 342-346 Enzymatic hydrolysis and modification of core polymer fibres for textile and other applications 2010 , 77-97 Biosensors Based on Laccase for Detection of Commercially Reactive Dyes. <i>Analytical Letters</i> , 2010 , 43, 1126-1131 Enzymatic modification of polyacrylonitrile and cellulose acetate fibres for textile and other	4.8 0.8	4 35 12 6

131	Microspheres of mixed proteins. Chemistry - A European Journal, 2010, 16, 2108-14	4.8	21
130	Functionalization of cellulose acetate fibers with engineered cutinases. <i>Biotechnology Progress</i> , 2010 , 26, 636-43	2.8	19
129	Polymerization of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility. <i>Bioresource Technology</i> , 2010 , 101, 5054-62	11	85
128	Effect of ultrasound parameters for unilamellar liposome preparation. <i>Ultrasonics Sonochemistry</i> , 2010 , 17, 628-32	8.9	77
127	Polymerization study of the aromatic amines generated by the biodegradation of azo dyes using the laccase enzyme. <i>Enzyme and Microbial Technology</i> , 2010 , 46, 360-365	3.8	47
126	Advances in textile biotechnology 2010 ,		6
125	A novel aryl acylamidase from Nocardia farcinica hydrolyses polyamide. <i>Biotechnology and Bioengineering</i> , 2009 , 102, 1003-11	4.9	40
124	Characterisation of enzymatically oxidised lignosulfonates and their application on lignocellulosic fabrics. <i>Polymer International</i> , 2009 , 58, 863-868	3.3	28
123	Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. <i>Journal of Biotechnology</i> , 2009 , 143, 207-12	3.7	141
122	MicroaerophilicEerobic sequential decolourization/biodegradation of textile azo dyes by a facultative Klebsiella sp. strain VN-31. <i>Process Biochemistry</i> , 2009 , 44, 446-452	4.8	95
121	Expression system of CotA-laccase for directed evolution and high-throughput screenings for the oxidation of high-redox potential dyes. <i>Biotechnology Journal</i> , 2009 , 4, 558-63	5.6	43
120	Biodegradable materials based on silk fibroin and keratin. <i>Biomacromolecules</i> , 2009 , 10, 1019	6.9	13
119	Proteolytic enzyme engineering: a tool for wool. <i>Biomacromolecules</i> , 2009 , 10, 1655-61	6.9	32
118	Liposome formation with wool lipid extracts rich in ceramides. <i>Journal of Liposome Research</i> , 2009 , 19, 77-83	6.1	4
117	The effect of cellulase treatment in textile washing processes. <i>Coloration Technology</i> , 2008 , 113, 218-2	22	25
116	Treatment of cotton fabrics with purified Trichoderma reesei cellulases. <i>Coloration Technology</i> , 2008 , 114, 216-220		11
115	Enzymes go big: surface hydrolysis and functionalization of synthetic polymers. <i>Trends in Biotechnology</i> , 2008 , 26, 32-8	15.1	162
114	Enzymatic hydrolysis of PTT polymers and oligomers. <i>Journal of Biotechnology</i> , 2008 , 135, 45-51	3.7	60

113	Surface hydrolysis of polyamide with a new polyamidase from Beauveria brongniartii. <i>Biocatalysis and Biotransformation</i> , 2008 , 26, 371-377	2.5	18	
112	Application of enzymes for textile fibres processing. <i>Biocatalysis and Biotransformation</i> , 2008 , 26, 332-3	3 49 5	188	
111	Biotransformations in synthetic fibres. <i>Biocatalysis and Biotransformation</i> , 2008 , 26, 350-356	2.5	18	
110	Enzymatic surface hydrolysis of PET enhances bonding in PVC coating. <i>Biocatalysis and Biotransformation</i> , 2008 , 26, 365-370	2.5	22	
109	MALDI-TOF Mass Spectrometry in Textile Industry. <i>NATO Science for Peace and Security Series A:</i> Chemistry and Biology, 2008 , 193-203	0.1	O	
108	Bioelectrochemical investigations of aryl-alcohol oxidase from Pleurotus eryngii. <i>Journal of Electroanalytical Chemistry</i> , 2008 , 618, 83-86	4.1	7	
107	Incorporation of peptides in phospholipid aggregates using ultrasound. <i>Ultrasonics Sonochemistry</i> , 2008 , 15, 1026-32	8.9	22	
106	Strategies towards the Functionalization of Subtilisin E from Bacillus subtilis for Wool Finishing Applications. <i>Engineering in Life Sciences</i> , 2008 , 8, 238-249	3.4	5	
105	In-situ Enzymatic Generation of Hydrogen Peroxide for Bleaching Purposes. <i>Engineering in Life Sciences</i> , 2008 , 8, 315-323	3.4	18	
104	Biological Coloration of Flax Fabrics with Flavonoids using Laccase from Trametes hirsuta. <i>Engineering in Life Sciences</i> , 2008 , 8, 324-330	3.4	46	
103	Biodegradable materials based on silk fibroin and keratin. <i>Biomacromolecules</i> , 2008 , 9, 1299-305	6.9	281	
102	Stability and decolourization ability of Trametes villosa laccase in liquid ultrasonic fields. <i>Ultrasonics Sonochemistry</i> , 2007 , 14, 355-62	8.9	84	
101	Combined ultrasound-laccase assisted bleaching of cotton. <i>Ultrasonics Sonochemistry</i> , 2007 , 14, 350-4	8.9	87	
100	Staining of wool using the reaction products of ABTS oxidation by laccase: synergetic effects of ultrasound and cyclic voltammetry. <i>Ultrasonics Sonochemistry</i> , 2007 , 14, 363-7	8.9	17	
99	A novel metalloprotease from Bacillus cereus for protein fibre processing. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 1772-1781	3.8	60	
98	Effect of the agitation on the adsorption and hydrolytic efficiency of cutinases on polyethylene terephthalate fibres. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 1801-1805	3.8	42	
97	Development and industrialisation of enzymatic shrink-resist process based on modified proteases for wool machine washability. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 1656-1661	3.8	73	
96	Influence of mechanical agitation on cutinases and protease activity towards polyamide substrates. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 1678-1685	3.8	48	

95	Enzymatic reduction and oxidation of fibre-bound azo-dyes. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 1732-1738	3.8	31
94	Purification and mechanistic characterisation of two polygalacturonases from Sclerotium rolfsii. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 1739-1747	3.8	31
93	Enzymatic synthesis of Tinuvin. Enzyme and Microbial Technology, 2007, 40, 1748-1752	3.8	14
92	Enzymatic polymerization on the surface of functionalized cellulose fibers. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 1782-1787	3.8	37
91	Laccases for enzymatic colouration of unbleached cotton. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 1788-1793	3.8	50
90	Cotton fabric: A natural matrix suitable for controlled release systems. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 1646-1650	3.8	7
89	Laccase immobilization on enzymatically functionalized polyamide 6,6 fibres. <i>Enzyme and Microbial Technology</i> , 2007 , 41, 867-875	3.8	69
88	Decolourisation of a synthetic textile effluent using a bacterial consortium. <i>Biotechnology Journal</i> , 2007 , 2, 370-3	5.6	2
87	Using a nitrilase for the surface modification of acrylic fibres. <i>Biotechnology Journal</i> , 2007 , 2, 353-60	5.6	31
86	Enzymatic reduction of azo and indigoid compounds. <i>Applied Microbiology and Biotechnology</i> , 2007 , 77, 321-7	5.7	27
85	Hydrolysis of PET and bis-(benzoyloxyethyl) terephthalate with a new polyesterase from Penicillium citrinum. <i>Biocatalysis and Biotransformation</i> , 2007 , 25, 171-177	2.5	79
84	Biotechnological treatment of textile dye effluent 2007 , 212-231		2
83	New Developments of Enzymatic Treatments on Cellulosic Fibers. ACS Symposium Series, 2007, 186-19	2 0.4	2
82	Surface hydrolysis of polyacrylonitrile with nitrile hydrolysing enzymes from Micrococcus luteus BST20. <i>Journal of Biotechnology</i> , 2007 , 129, 62-8	3.7	37
81	Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers. <i>Journal of Biotechnology</i> , 2007 , 128, 849-57	3.7	135
80	Peptide structure: Its effect on penetration into human hair. <i>Journal of Cosmetic Science</i> , 2007 , 58, 339	-46 .7	3
79	Restricting detergent protease action to surface of protein fibres by chemical modification. <i>Applied Microbiology and Biotechnology</i> , 2006 , 72, 738-44	5.7	25
78	New model substrates for enzymes hydrolysing polyethyleneterephthalate and polyamide fibres. Journal of Proteomics, 2006 , 69, 89-99		108

(2005-2006)

77	Optimisation of a serine protease coupling to Eudragit S-100 by experimental design techniques. Journal of Chemical Technology and Biotechnology, 2006 , 81, 8-16	3.5	37
76	Surface modification of polyacrylonitrile with nitrile hydratase and amidase from Agrobacterium tumefaciens. <i>Biocatalysis and Biotransformation</i> , 2006 , 24, 419-425	2.5	25
75	Immobilization of proteases with a water soluble[hsoluble reversible polymer for treatment of wool. <i>Enzyme and Microbial Technology</i> , 2006 , 39, 634-640	3.8	93
74	The effect of additives and mechanical agitation in surface modification of acrylic fibres by cutinase and esterase. <i>Biotechnology Journal</i> , 2006 , 1, 842-9	5.6	19
73	Enzymatic removal of cellulose from cotton/polyester fabric blends. <i>Cellulose</i> , 2006 , 13, 611-618	5.5	35
72	Advances in biotechnology for fibre processing. <i>Biotechnology Letters</i> , 2006 , 28, 679-680	3	5
71	A new cuticle scale hydrolysing protease from Beauveria brongniartii. <i>Biotechnology Letters</i> , 2006 , 28, 703-10	3	14
70	New enzyme-based process direction to prevent wool shrinking without substantial tensile strength loss. <i>Biotechnology Letters</i> , 2006 , 28, 711-6	3	28
69	Detergent formulations for wool domestic washings containing immobilized enzymes. <i>Biotechnology Letters</i> , 2006 , 28, 725-31	3	16
68	Specificities of a chemically modified laccase from Trametes hirsuta on soluble and cellulose-bound substrates. <i>Biotechnology Letters</i> , 2006 , 28, 741-7	3	11
67	Surface Modification of Cellulose Fibers with Hydrolases and Kinases 2006 , 159-180		2
66	Degradation of azo dyes by Trametes villosa laccase over long periods of oxidative conditions. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 6711-8	4.8	125
65	Kinetics of direct and substrate-mediated electron transfer of versatile peroxidase-modified graphite electrodes. <i>Journal of Electroanalytical Chemistry</i> , 2005 , 580, 35-40	4.1	3
64	Treatment of wool fibres with subtilisin and subtilisin-PEG. <i>Enzyme and Microbial Technology</i> , 2005 , 36, 917-922	3.8	75
63	Laccase kinetics of degradation and coupling reactions. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2005 , 33, 23-28		34
62	Environmentally friendly bleaching of cotton using laccases. <i>Environmental Chemistry Letters</i> , 2005 , 3, 66-69	13.3	58
61	Biotransformation of phenolics with laccase containing bacterial spores. <i>Environmental Chemistry Letters</i> , 2005 , 3, 74-77	13.3	56
60	Cutinase Inew tool for biomodification of synthetic fibers. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 2448-2450	2.5	84

59	Influence of organic solvents on cutinase stability and accessibility to polyamide fibers. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 2749-2753	2.5	32
58	Azo reductase activity of intact saccharomyces cerevisiae cells is dependent on the Fre1p component of plasma membrane ferric reductase. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 3882-8	4.8	40
57	Laccase-catalyzed decolorization of the synthetic azo-dye diamond black PV 200 and of some structurally related derivatives. <i>Biocatalysis and Biotransformation</i> , 2004 , 22, 331-339	2.5	42
56	Influence of structure on dye degradation with laccase mediator systems. <i>Biocatalysis and Biotransformation</i> , 2004 , 22, 315-324	2.5	70
55	New enzymes with potential for PET surface modification. <i>Biocatalysis and Biotransformation</i> , 2004 , 22, 341-346	2.5	79
54	Monitoring biotransformations in polyamide fibres. <i>Biocatalysis and Biotransformation</i> , 2004 , 22, 357-3	360 .5	32
53	Characterization of azo reduction activity in a novel ascomycete yeast strain. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 2279-88	4.8	116
52	A new alkali-thermostable azoreductase from Bacillus sp. strain SF. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 837-44	4.8	177
51	Predicting dye biodegradation from redox potentials. <i>Biotechnology Progress</i> , 2004 , 20, 1588-92	2.8	71
50	Implementation of batchwise bioscouring of cotton knits. <i>Biocatalysis and Biotransformation</i> , 2004 , 22, 375-382	2.5	32
49	Monitoring biotransformations in polyesters. <i>Biocatalysis and Biotransformation</i> , 2004 , 22, 353-356	2.5	30
48	Catalysis and processing 2003 , 86-119		14
47	Effect of some process parameters in enzymatic dyeing of wool. <i>Applied Biochemistry and Biotechnology</i> , 2003 , 111, 1-13	3.2	44
46	Immobilized laccase for decolourization of Reactive Black 5 dyeing effluent. <i>Biotechnology Letters</i> , 2003 , 25, 1473-7	3	112
45	Proteases to Improve the Mechanical Characteristics of Durable Press Finished Cotton Fabrics. <i>Macromolecular Materials and Engineering</i> , 2003 , 288, 71-75	3.9	5
44	Laccases to Improve the Whiteness in a Conventional Bleaching of Cotton. <i>Macromolecular Materials and Engineering</i> , 2003 , 288, 807-810	3.9	70
43	Effect of purified Trichoderma reesei cellulases on formation of cotton powder from cotton fabric. Journal of Applied Polymer Science, 2003 , 90, 1917-1922	2.9	8
42	An acid-stable laccase from Sclerotium rolfsii with potential for wool dye decolourization. <i>Enzyme</i> and Microbial Technology, 2003 , 33, 766-774	3.8	93

(2001-2002)

41	Phosphorylation of Cotton Cellulose with Baker's Yeast Hexokinase. <i>Macromolecular Rapid Communications</i> , 2002 , 23, 962-964	4.8	17
40	Lipases to Improve the Performance of Formaldehyde-Free Durable Press Finished Cotton Fabrics. <i>Macromolecular Materials and Engineering</i> , 2002 , 287, 462	3.9	8
39	Studies of stabilization of native catalase using additives. <i>Enzyme and Microbial Technology</i> , 2002 , 30, 387-391	3.8	68
38	Voltammetric monitoring of laccase-catalysed mediated reactions. <i>Bioelectrochemistry</i> , 2002 , 58, 149-	5 6 5.6	99
37	Recycling of textile bleaching effluents for dyeing using immobilized catalase. <i>Biotechnology Letters</i> , 2002 , 24, 173-176	3	27
36	Possibilities for recycling cellulases after use in cotton processing: part I: Effects of end-product inhibition, thermal and mechanical deactivation, and cellulase depletion by adsorption. <i>Applied Biochemistry and Biotechnology</i> , 2002 , 101, 61-75	3.2	11
35	Possibilities for recycling cellulases after use in cotton processing: part II: Separation of cellulases from reaction products and released dyestuffs by ultrafiltration. <i>Applied Biochemistry and Biotechnology</i> , 2002 , 101, 77-91	3.2	8
34	Hydrogen peroxide generation with immobilized glucose oxidase for textile bleaching. <i>Journal of Biotechnology</i> , 2002 , 93, 87-94	3.7	110
33	An immobilised catalase peroxidase from the alkalothermophilic Bacillus SF for the treatment of textile-bleaching effluents. <i>Applied Microbiology and Biotechnology</i> , 2002 , 60, 313-9	5.7	42
32	A catalase-peroxidase from a newly isolated thermoalkaliphilic Bacillus sp. with potential for the treatment of textile bleaching effluents. <i>Extremophiles</i> , 2001 , 5, 423-9	3	45
31	Immobilization of catalases from Bacillus SF on alumina for the treatment of textile bleaching effluents. <i>Enzyme and Microbial Technology</i> , 2001 , 28, 815-819	3.8	98
30	Bio-preparation of cotton fabrics. <i>Enzyme and Microbial Technology</i> , 2001 , 29, 357-362	3.8	127
29	In SituEnzymatically Prepared Polymers for Wool Coloration. <i>Macromolecular Materials and Engineering</i> , 2001 , 286, 691	3.9	45
28	Desorption of cellulases from cotton powder. <i>Biotechnology Letters</i> , 2001 , 23, 1445-1448	3	11
27	Effect of temperature and bath composition on the dyeing of cotton with catalase-treated bleaching effluent. <i>Coloration Technology</i> , 2001 , 117, 166-170	2	17
26	Dyeing in catalase-treated bleaching baths. <i>Coloration Technology</i> , 2001 , 117, 1-5	2	31
25	Polyoxometalates as mediators in the laccase catalyzed delignification. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2001 , 16, 131-140		20
24	Indigo Degradation with Laccases from Polyporus sp. and Sclerotium rolfsii. <i>Textile Reseach Journal</i> , 2001 , 71, 420-424	1.7	16

23	Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. <i>Journal of Biotechnology</i> , 2001 , 89, 131-9	3.7	194
22	Thermo-alkali-stable catalases from newly isolated Bacillus sp. for the treatment and recycling of textile bleaching effluents. <i>Journal of Biotechnology</i> , 2001 , 89, 147-53	3.7	54
21	Effects of agitation level on the adsorption, desorption, and activities on cotton fabrics of full length and core domains of EGV (Humicola insolens) and CenA (Cellulomonas fimi). <i>Enzyme and Microbial Technology</i> , 2000 , 27, 325-329	3.8	52
20	Dry action of Trichoderma reesei cellulases on cotton fabrics. <i>Coloration Technology</i> , 2000 , 116, 121-1	25 ₂	
19	Nitrile hydratase and amidase from Rhodococcus rhodochrous hydrolyze acrylic fibers and granular polyacrylonitriles. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 1634-8	4.8	65
18	Enzymatic Treatment of LyocellClarification of Depilling Mechanisms. <i>Textile Reseach Journal</i> , 2000 , 70, 696-699	1.7	33
17	Enzymatic Decolorization of Textile Dyeing Effluents. Textile Reseach Journal, 2000, 70, 409-414	1.7	81
16	Influence of Cellulases on Indigo Backstaining. Textile Reseach Journal, 2000, 70, 628-632	1.7	36
15	Indigo-Cellulase Interactions. Textile Reseach Journal, 2000, 70, 532-536	1.7	31
14	Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 3357-62	4.8	579
13	Interactions of cotton with CBD peptides. Enzyme and Microbial Technology, 1999, 25, 639-643	3.8	27
12	Effects of temperature on the cellulose binding ability of cellulase enzymes. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 1999 , 7, 233-239		46
11			
	Mechanism of cellulase action in textile processes. Carbohydrate Polymers, 1998, 37, 273-277	10.3	162
10	Mechanism of cellulase action in textile processes. <i>Carbohydrate Polymers</i> , 1998 , 37, 273-277 Indigo Backstaining During Cellulase Washing. <i>Textile Reseach Journal</i> , 1998 , 68, 398-401	10.3	16260
10 9			
	Indigo Backstaining During Cellulase Washing. <i>Textile Reseach Journal</i> , 1998 , 68, 398-401	1.7	60
9	Indigo Backstaining During Cellulase Washing. <i>Textile Reseach Journal</i> , 1998 , 68, 398-401 Processing Textile Fibers with Enzymes: An Overview. <i>ACS Symposium Series</i> , 1998 , 180-189 Hydrolysis of Cotton Cellulose by Engineered Cellulases from Trichoderma reesei. <i>Textile Reseach</i>	0.4	60 22 44

LIST OF PUBLICATIONS

5	Effects of Agitation and Endoglucanase Pretreatment on the Hydrolysis of Cotton Fabrics by a Total Cellulase. <i>Textile Reseach Journal</i> , 1996 , 66, 287-294	1.7	68	
4	Cellulase Hydrolysis of Cotton Cellulose: The Effects of Mechanical Action, Enzyme Concentration and Dyed Substrates. <i>Biocatalysis</i> , 1994 , 10, 353-360		40	
3	Grafting of Poly(tyrosine) by Laccase Improves the Tensile Strength and Anti-shrinkage of Wool. <i>Journal of Natural Fibers</i> ,1-13	1.8	4	
2	The comfort properties of cosmeto-textiles functionalized with protein-based nanoemulsions encapsulating Vitamin-E. <i>Journal of Natural Fibers</i> ,1-13	1.8	2	
1	Biotransformation of Synthetic Fibers1		О	