

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10549424/publications.pdf Version: 2024-02-01

		15880	24511
117	20,477	67	114
papers	citations	h-index	g-index
117	117	117	6935
all docs	docs citations	times ranked	citing authors

BW ANC

#	Article	IF	CITATIONS
1	Energy consumption and energy efficiency trends in Singapore: The case of a meticulously planned city. Energy Policy, 2022, 161, 112732.	4.2	15
2	Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers. Energy Economics, 2022, 107, 105875.	5.6	31
3	Decomposition analysis of air pollutants during the transition and post-transition periods in the Czech Republic. Renewable and Sustainable Energy Reviews, 2021, 145, 111137.	8.2	5
4	Driving factors of changes in international maritime energy consumption: Microdata evidence 2014–2017. Energy Policy, 2021, 154, 112288.	4.2	6
5	Multi-region input-output analysis of embodied emissions and intensities: Spatial aggregation by linking regional and global datasets. Journal of Cleaner Production, 2021, 313, 127894.	4.6	37
6	Four reasons why there is so much confusion about energy efficiency. Energy Policy, 2020, 146, 111832.	4.2	13
7	Demand contributors and driving factors of Singapore's aggregate carbon intensities. Energy Policy, 2020, 146, 111817.	4.2	31
8	Structural path and decomposition analysis of aggregate embodied energy and emission intensities. Energy Economics, 2019, 83, 345-360.	5.6	98
9	Index decomposition analysis for comparing emission scenarios: Applications and challenges. Energy Economics, 2019, 83, 74-87.	5.6	55
10	Assessing the role of international trade in global CO2 emissions: An index decomposition analysis approach. Applied Energy, 2018, 218, 146-158.	5.1	92
11	Quantifying CO2 emission reductions from renewables and nuclear energy – Some paradoxes. Energy Policy, 2018, 113, 651-662.	4.2	59
12	Drivers of stagnating global carbon intensity of electricity and the way forward. Energy Policy, 2018, 113, 149-156.	4.2	76
13	Bridging the gap between energy-to-GDP ratio and composite energy intensity index. Energy Policy, 2018, 119, 105-112.	4.2	37
14	Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions. Applied Energy, 2018, 231, 1191-1204.	5.1	56
15	Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues. Energy, 2017, 123, 47-63.	4.5	84
16	Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities. Energy Economics, 2017, 65, 137-147.	5.6	219
17	Assessing drivers of economy-wide energy use and emissions: IDA versus SDA. Energy Policy, 2017, 107, 585-599.	4.2	273
18	Climatic influence on electricity consumption: The case of Singapore and Hong Kong. Energy, 2017, 127, 534-543.	4.5	50

#	Article	IF	CITATIONS
19	Input-output and structural decomposition analysis of Singapore's carbon emissions. Energy Policy, 2017, 105, 484-492.	4.2	201
20	Measuring energy performance with sectoral heterogeneity: A non-parametric frontier approach. Energy Economics, 2017, 62, 70-78.	5.6	45
21	A Multi-region Structural Decomposition Analysis of Global CO 2 Emission Intensity. Ecological Economics, 2017, 142, 163-176.	2.9	127
22	Carbon emission intensity in electricity production: A global analysis. Energy Policy, 2016, 94, 56-63.	4.2	300
23	Multi-region comparisons of emission performance: The structural decomposition analysis approach. Ecological Indicators, 2016, 67, 78-87.	2.6	155
24	A spatial–temporal decomposition approach to performance assessment in energy and emissions. Energy Economics, 2016, 60, 112-121.	5.6	120
25	Carbon intensity of electricity in ASEAN: Drivers, performance and outlook. Energy Policy, 2016, 98, 170-179.	4.2	77
26	LMDI decomposition approach: A guide for implementation. Energy Policy, 2015, 86, 233-238.	4.2	742
27	Multiplicative decomposition of aggregate carbon intensity change using input–output analysis. Applied Energy, 2015, 154, 13-20.	5.1	233
28	Index decomposition analysis with multidimensional and multilevel energy data. Energy Economics, 2015, 51, 67-76.	5.6	97
29	A framework for evaluating Singapore's energy security. Applied Energy, 2015, 148, 314-325.	5.1	92
30	Multi-country comparisons of energy performance: The index decomposition analysis approach. Energy Economics, 2015, 47, 68-76.	5.6	192
31	Energy security: Definitions, dimensions and indexes. Renewable and Sustainable Energy Reviews, 2015, 42, 1077-1093.	8.2	565
32	Multilevel index decomposition analysis: Approaches and application. Energy Economics, 2014, 44, 375-382.	5.6	39
33	Analysing residential energy consumption using index decomposition analysis. Applied Energy, 2014, 113, 342-351.	5.1	97
34	Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China. Applied Energy, 2014, 114, 377-384.	5.1	345
35	Attribution of changes in the generalized Fisher index with application to embodied emission studies. Energy, 2014, 69, 778-786.	4.5	90
36	Index decomposition analysis applied to CO2 emission studies. Ecological Economics, 2013, 93, 313-329.	2.9	246

#	Article	IF	CITATIONS
37	Tracking industrial energy efficiency trends using index decomposition analysis. Energy Economics, 2013, 40, 1014-1021.	5.6	77
38	Input–output analysis of CO2 emissions embodied in trade: Competitive versus non-competitive imports. Energy Policy, 2013, 56, 83-87.	4.2	266
39	Input–output analysis of CO2 emissions embodied in trade and the driving forces: Processing and normal exports. Ecological Economics, 2013, 88, 119-125.	2.9	185
40	Measuring economy-wide energy efficiency performance: A parametric frontier approach. Applied Energy, 2012, 90, 196-200.	5.1	312
41	Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach. European Journal of Operational Research, 2012, 221, 625-635.	3.5	669
42	Attribution of changes in Divisia real energy intensity index — An extension to index decomposition analysis. Energy Economics, 2012, 34, 171-176.	5.6	141
43	Structural decomposition analysis applied to energy and emissions: Some methodological developments. Energy Economics, 2012, 34, 177-188.	5.6	726
44	Multi-region input–output analysis of CO2 emissions embodied in trade: The feedback effects. Ecological Economics, 2011, 71, 42-53.	2.9	195
45	Potential for reducing global carbon emissions from electricity production—A benchmarking analysis. Energy Policy, 2011, 39, 2482-2489.	4.2	56
46	Total factor carbon emission performance: A Malmquist index analysis. Energy Economics, 2010, 32, 194-201.	5.6	583
47	Input–output analysis of CO2 emissions embodied in trade: The effects of spatial aggregation. Ecological Economics, 2010, 70, 10-18.	2.9	218
48	Input–output analysis of CO2 emissions embodied in trade: The effects of sector aggregation. Energy Economics, 2010, 32, 166-175.	5.6	375
49	Accounting frameworks for tracking energy efficiency trends. Energy Economics, 2010, 32, 1209-1219.	5.6	199
50	Properties and linkages of some index decomposition analysis methods. Energy Policy, 2009, 37, 4624-4632.	4.2	143
51	Linear programming models for measuring economy-wide energy efficiency performance. Energy Policy, 2008, 36, 2911-2916.	4.2	411
52	Measuring environmental performance under different environmental DEA technologies. Energy Economics, 2008, 30, 1-14.	5.6	422
53	Decomposition of aggregate CO2 emissions: A production-theoretical approach. Energy Economics, 2008, 30, 1054-1067.	5.6	261
54	A survey of data envelopment analysis in energy and environmental studies. European Journal of Operational Research, 2008, 189, 1-18,	3.5	942

#	Article	IF	CITATIONS
55	A multiplicative optimization model for constructing composite indicators. , 2007, , .		Ο
56	Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix. Energy Economics, 2007, 29, 609-635.	5.6	141
57	Handling zero values in the logarithmic mean Divisia index decomposition approach. Energy Policy, 2007, 35, 238-246.	4.2	314
58	Energy decomposition analysis: IEA model versus other methods. Energy Policy, 2007, 35, 1426-1432.	4.2	104
59	A mathematical programming approach to constructing composite indicators. Ecological Economics, 2007, 62, 291-297.	2.9	257
60	Negative-value problems of the logarithmic mean Divisia index decomposition approach. Energy Policy, 2007, 35, 739-742.	4.2	112
61	Monitoring changes in economy-wide energy efficiency: From energy–GDP ratio to composite efficiency index. Energy Policy, 2006, 34, 574-582.	4.2	258
62	A cross-country analysis of aggregate energy and carbon intensities. Energy Policy, 2006, 34, 2398-2404.	4.2	40
63	Comparing aggregating methods for constructing the composite environmental index: An objective measure. Ecological Economics, 2006, 59, 305-311.	2.9	205
64	Slacks-based efficiency measures for modeling environmental performance. Ecological Economics, 2006, 60, 111-118.	2.9	383
65	The LMDI approach to decomposition analysis: a practical guide. Energy Policy, 2005, 33, 867-871.	4.2	1,174
66	Decomposition Analysis Applied to Energy. , 2004, , 761-769.		7
67	Decomposition analysis for policymaking in energy:. Energy Policy, 2004, 32, 1131-1139.	4.2	1,600
68	Growth curves for long-term global CO2 emission reduction analysis. Energy Policy, 2004, 32, 1569-1572.	4.2	5
69	A generalized Fisher index approach to energy decomposition analysis. Energy Economics, 2004, 26, 757-763.	5.6	106
70	Decomposition of aggregate energy intensity changes in two measures: ratio and difference. Energy Economics, 2003, 25, 615-624.	5.6	72
71	Perfect decomposition techniques in energy and environmental analysis. Energy Policy, 2003, 31, 1561-1566.	4.2	287
72	Eight methods for decomposing the aggregate energy-intensity of industry. Applied Energy, 2003, 76, 15-23.	5.1	79

#	Article	IF	CITATIONS
73	Measuring thermal efficiency improvement in power generation. Energy, 2002, 27, 447-455.	4.5	17
74	Boundary problem in carbon emission decomposition. Energy Policy, 2002, 30, 1201-1205.	4.2	26
75	A new energy decomposition method: perfect in decomposition and consistent in aggregation. Energy, 2001, 26, 537-548.	4.5	593
76	A time-series analysis of energy-related carbon emissions in Korea. Energy Policy, 2001, 29, 1155-1161.	4.2	46
77	Methodological issues in cross-country/region decomposition of energy and environment indicators. Energy Economics, 2001, 23, 179-190.	5.6	99
78	A comparative analysis of R&D project evaluation methods. R and D Management, 2001, 31, 63-75.	3.0	103
79	Why Singapore's land transportation energy consumption is relatively low. Natural Resources Forum, 2001, 25, 135-146.	1.8	7
80	Some properties of an exact energy decomposition model. Energy, 2000, 25, 1177-1188.	4.5	95
81	A survey of index decomposition analysis in energy and environmental studies. Energy, 2000, 25, 1149-1176.	4.5	1,025
82	Inter-regional comparisons of energy-related CO2 emissions using the decomposition technique. Energy, 1999, 24, 297-305.	4.5	116
83	Break-even price of distributed generation under uncertainty. Energy, 1999, 24, 579-589.	4.5	8
84	Transportation fuels and policy for Singapore: an AHP planning approach. Computers and Industrial Engineering, 1999, 37, 507-525.	3.4	96
85	Is the energy intensity a less useful indicator than the carbon factor in the study of climate change?. Energy Policy, 1999, 27, 943-946.	4.2	143
86	Factorizing changes in energy and environmental indicators through decomposition. Energy, 1998, 23, 489-495.	4.5	653
87	Decomposition of Aggregate Energy Intensity of Industry with Application to China, Korea and Taiwan. Energy and Environment, 1997, 8, 1-11.	2.7	6
88	Decomposition of energy-induced CO2 emissions in manufacturing. Energy Economics, 1997, 19, 363-374.	5.6	109
89	Synthesizing Environmental Externality Costs – A Statistical and Multi-Attribute Analysis Approach. Energy and Environment, 1996, 7, 253-266.	2.7	6
90	Decomposition of industrial energy consumption: The energy coefficient approach. Energy Economics, 1996, 18, 129-143.	5.6	46

#	Article	IF	CITATIONS
91	Decomposition of the energy-intensity index with application for the Korean manufacturing industry. Energy, 1995, 20, 835-842.	4.5	26
92	Multilevel decomposition of industrial energy consumption. Energy Economics, 1995, 17, 39-51.	5.6	64
93	Decision analysis in energy and environmental modeling. Energy, 1995, 20, 843-855.	4.5	143
94	Decomposition methodology in industrial energy demand analysis. Energy, 1995, 20, 1081-1095.	4.5	181
95	Structural Change, Sector Disaggregation and Electricity Consumption in uk Industry. Energy and Environment, 1994, 5, 1-16.	2.7	13
96	Decomposition of industrial energy consumption. Energy Economics, 1994, 16, 83-92.	5.6	168
97	Decomposition of industrial energy consumption. Energy Economics, 1994, 16, 163-174.	5.6	111
98	Sector disaggregation, structural effect and industrial energy use: An approach to analyze the interrelationships. Energy, 1993, 18, 1033-1044.	4.5	25
99	A factorization analysis of automobile fuel consumption in actual traffic. Energy, 1992, 17, 629-634.	4.5	5
100	Sector disaggregation and the effect of structural change on industrial energy consumption. Energy, 1992, 17, 679-687.	4.5	20
101	Interfuel substitution and decomposition of changes in industrial energy consumption. Energy, 1992, 17, 689-696.	4.5	35
102	A statistical analysis of energy coefficients. Energy Economics, 1991, 13, 93-110.	5.6	11
103	A statistical analysis of the fuel efficiencies of public buses. Energy, 1991, 16, 823-831.	4.5	7
104	A statistical study on automobile fuel consumption. Energy, 1991, 16, 1067-1077.	4.5	9
105	Statistical evaluation of fuel consumption of buses with specific operational changes. Energy, 1991, 16, 1225-1230.	4.5	1
106	Reducing traffic congestion and its impact on transport energy use in Singapore. Energy Policy, 1990, 18, 871-874.	4.2	14
107	Forecasting of diesel and petrol sales an evaluation of various marketing strategies. Energy Policy, 1990, 18, 246-254.	4.2	2
108	The effects of maintenance on the fuel efficiency of public buses. Energy, 1990, 15, 1099-1105.	4.5	4

#	Article	IF	CITATIONS
109	Asean energy demand: Current trends and future outlook. Energy, 1989, 14, 785-795.	4.5	3
110	A study on the fuel-consumption characteristics of public buses. Energy, 1989, 14, 797-803.	4.5	23
111	The use of growth curves in forecasting interfuel substitution processes. Energy, 1988, 13, 697-708.	4.5	1
112	Electricity-output ratio and sectoral electricity use The case of East and Southeast Asian developing countries. Energy Policy, 1988, 16, 115-121.	4.2	14
113	A cross-sectional analysis of energy—output correlation. Energy Economics, 1987, 9, 274-286.	5.6	28
114	Structural changes and energy-demand forecasting in industry with applications to two newly industrialized countries. Energy, 1987, 12, 101-111.	4.5	28
115	Energy-output ratios and sectoral energy use. Energy Policy, 1987, 15, 262-282.	4.2	10
116	A method for estimating non-commercial energy consumption in the household sector of developing countries. Energy, 1986, 11, 315-325.	4.5	11
117	Energy Consumption and Energy Efficiency Trends in Singapore: The Case of a Meticulously Planned City. SSRN Electronic Journal, 0, , .	0.4	1