Sung-Ryul Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10549369/publications.pdf Version: 2024-02-01

SUNC-RVIII KIM

#	Article	IF	CITATIONS
1	Cytokinin increases vegetative growth period by suppressing florigen expression in rice and maize. Plant Journal, 2022, 110, 1619-1635.	5.7	17
2	Tissue-specific enhancement of OsRNS1 with root-preferred expression is required for the increase of crop yield. Journal of Advanced Research, 2022, , .	9.5	0
3	Development of a genome-wide InDel marker set for allele discrimination between rice (Oryza sativa) and the other seven AA-genome Oryza species. Scientific Reports, 2021, 11, 8962.	3.3	12
4	CTP synthase is essential for early endosperm development by regulating nuclei spacing. Plant Biotechnology Journal, 2021, 19, 2177-2191.	8.3	9
5	QTL Mapping of a Novel Genomic Region Associated with High Out-Crossing Rate Derived from Oryza longistaminata and Development of New CMS Lines in Rice, O. sativa L Rice, 2021, 14, 80.	4.0	6
6	Breeding Temperate Japonica Rice Varieties Adaptable to Tropical Regions: Progress and Prospects. Agronomy, 2021, 11, 2253.	3.0	1
7	Genomics, Biotechnology and Plant Breeding for the Improvement of Rice Production. , 2020, , 217-232.		4
8	Introgression of a functional epigenetic OsSPL14WFP allele into elite indica rice genomes greatly improved panicle traits and grain yield. Scientific Reports, 2018, 8, 3833.	3.3	41
9	Integrated omics analysis of root-preferred genes across diverse rice varieties including Japonica and indica cultivars. Journal of Plant Physiology, 2018, 220, 11-23.	3.5	6
10	Loss-of-Function Alleles of Heading date 1 (Hd1) Are Associated With Adaptation of Temperate Japonica Rice Plants to the Tropical Region. Frontiers in Plant Science, 2018, 9, 1827.	3.6	29
11	Development of an intergeneric hybrid between <i>Oryza sativa</i> L. and <i>Leersia perrieri</i> (A. Camus) Launert. Breeding Science, 2018, 68, 474-480.	1.9	9
12	Newly Identified Wild Rice Accessions Conferring High Salt Tolerance Might Use a Tissue Tolerance Mechanism in Leaf. Frontiers in Plant Science, 2018, 9, 417.	3.6	57
13	Monosomic alien addition lines (MAALs) of Oryza rhizomatis in Oryza sativa: production, cytology, alien trait introgression, molecular analysis and breeding application. Theoretical and Applied Genetics, 2018, 131, 2197-2211.	3.6	14
14	Development of 25 near-isogenic lines (NILs) with ten BPH resistance genes in rice (Oryza sativa L.): production, resistance spectrum, and molecular analysis. Theoretical and Applied Genetics, 2017, 130, 2345-2360.	3.6	54
15	Identification and fine mapping of a new gene, BPH31 conferring resistance to brown planthopper biotype 4 of India to improve rice, Oryza sativa L. Rice, 2017, 10, 41.	4.0	46
16	Exploring genetic diversity of rice cultivars for the presence of brown planthopper (<scp>BPH</scp>) resistance genes and development of <scp>SNP</scp> marker for <i>Bph18</i> . Plant Breeding, 2016, 135, 301-308.	1.9	8
17	Map-based Cloning and Characterization of the BPH18 Gene from Wild Rice Conferring Resistance to Brown Planthopper (BPH) Insect Pest. Scientific Reports, 2016, 6, 34376.	3.3	107
18	Development and validation of allele-specific SNP/indel markers for eight yield-enhancing genes using whole-genome sequencing strategy to increase yield potential of rice, Oryza sativa L. Rice, 2016, 9, 12.	4.0	60

SUNG-RYUL KIM

#	Article	IF	CITATIONS
19	A Simple DNA Preparation Method for High Quality Polymerase Chain Reaction in Rice. Plant Breeding and Biotechnology, 2016, 4, 99-106.	0.9	16
20	Alanine aminotransferase 1 (OsAlaAT1) plays an essential role in the regulation of starch storage in rice endosperm. Plant Science, 2015, 240, 79-89.	3.6	26
21	Trithorax Group Protein <i>Oryza sativa</i> Trithorax1 Controls Flowering Time in Rice via Interaction with Early heading date3 Â Â. Plant Physiology, 2014, 164, 1326-1337.	4.8	96
22	<scp>O</scp> s <scp>VIL</scp> 2 functions with <scp>PRC</scp> 2 to induce flowering by repressing <scp><i>O</i></scp> <ii>S<i>IIII<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i>I<i< td=""><td>5.7</td><td>99</td></i<></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></ii>	5.7	99
23	Rice chloroplast-localized heat shock protein 70, OsHsp70CP1, is essential for chloroplast development under high-temperature conditions. Journal of Plant Physiology, 2013, 170, 854-863.	3.5	52
24	Genome-wide expression analysis of HSP70 family genes in rice and identification of a cytosolic HSP70 gene highly induced under heat stress. Functional and Integrative Genomics, 2013, 13, 391-402.	3.5	65
25	OsCpn60α1, Encoding the Plastid Chaperonin 60α Subunit, Is Essential for Folding of rbcL. Molecules and Cells, 2013, 35, 402-409.	2.6	32
26	Rice <i>GLYCOSYLTRANSFERASE1</i> Encodes a Glycosyltransferase Essential for Pollen Wall Formation Â. Plant Physiology, 2013, 161, 663-675.	4.8	88
27	Overexpression of a BAHD Acyltransferase, <i>OsAt10</i> , Alters Rice Cell Wall Hydroxycinnamic Acid Content and Saccharification Â. Plant Physiology, 2013, 161, 1615-1633.	4.8	164
28	Genome-wide identification and analysis of early heat stress responsive genes in rice. Journal of Plant Biology, 2012, 55, 458-468.	2.1	44
29	Bacterial Transposons Are Co-Transferred with T-DNA to Rice Chromosomes during Agrobacterium-Mediated Transformation. Molecules and Cells, 2012, 33, 583-590.	2.6	15
30	The rice gene <i>DEFECTIVE TAPETUM AND MEIOCYTES 1</i> (<i>DTM1</i>) is required for early tapetum development and meiosis. Plant Journal, 2012, 70, 256-270.	5.7	38
31	Development of an Efficient Inverse PCR Method for Isolating Gene Tags from T-DNA Insertional Mutants in Rice. Methods in Molecular Biology, 2011, 678, 139-146.	0.9	21
32	Inactivation of the CTD phosphatase-like gene <i>OsCPL1</i> enhances the development of the abscission layer and seed shattering in rice. Plant Journal, 2010, 61, 96-106.	5.7	89
33	Rice Aldehyde Dehydrogenase7 Is Needed for Seed Maturation and Viability Â. Plant Physiology, 2009, 149, 905-915.	4.8	125
34	Cloning Vectors for Rice. Journal of Plant Biology, 2009, 52, 73-78.	2.1	95
35	Rice <i>OGR1</i> encodes a pentatricopeptide repeat–DYW protein and is essential for RNA editing in mitochondria. Plant Journal, 2009, 59, 738-749.	5.7	148
36	Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant Journal, 2006, 45, 123-132.	5.7	321

#	Article	IF	CITATIONS
37	Transgene structures in T-DNA-inserted rice plants. Plant Molecular Biology, 2003, 52, 761-773.	3.9	127
38	Generation and Analysis of End Sequence Database for T-DNA Tagging Lines in Rice. Plant Physiology, 2003, 133, 2040-2047.	4.8	238