
Anthony R Cashmore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10547926/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature, 1993, 366, 162-166.	27.8	1,198
2	Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature, 2001, 410, 952-954.	27.8	448
3	Light-Regulated Transcription. Annual Review of Plant Biology, 1995, 46, 445-474.	14.3	424
4	The C Termini of Arabidopsis Cryptochromes Mediate a Constitutive Light Response. Cell, 2000, 103, 815-827.	28.9	383
5	The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends in Biochemical Sciences, 1995, 20, 506-510.	7.5	367
6	Targeting of a foreign protein to chloroplasts by fusion to the transit peptide from the small subunit of ribulose 1,5-bisphosphate carboxylase. Nature, 1985, 313, 358-363.	27.8	340
7	The Signaling Mechanism of Arabidopsis CRY1 Involves Direct Interaction with COP1. Plant Cell, 2001, 13, 2573-2587.	6.6	313
8	The CRY1 Blue Light Photoreceptor of Arabidopsis Interacts with Phytochrome A In Vitro. Molecular Cell, 1998, 1, 939-948.	9.7	308
9	Cryptochromes. Cell, 2003, 114, 537-543.	28.9	277
10	Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development. Plant Journal, 1996, 10, 893-902.	5.7	220
11	An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature, 2001, 410, 487-490.	27.8	199
12	Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. Plant Journal, 1995, 8, 653-658.	5.7	194
13	The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana. Plant Journal, 1997, 11, 421-427.	5.7	191
14	Molecular characterization and genetic mapping of two clusters of genes encoding chlorophyll a/b-binding proteins in Lycopersicon esculentum (tomato). Gene, 1985, 40, 247-258.	2.2	174
15	Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism. Nature, 1998, 392, 720-723.	27.8	168
16	Chimeric Proteins between cry1 and cry2 Arabidopsis Blue Light Photoreceptors Indicate Overlapping Functions and Varying Protein Stability. Plant Cell, 1998, 10, 197-207.	6.6	158
17	Seeing blue: the discovery of cryptochrome. Plant Molecular Biology, 1996, 30, 851-861.	3.9	153
18	Light-inducible and tissue-specific expression of a chimaeric gene under control of the 5′-flanking sequence of a pea chlorophyll <i>a/b</i> -binding protein gene. EMBO Journal, 1985, 4, 2723-2729.	7.8	131

ANTHONY R CASHMORE

#	Article	IF	CITATIONS
19	Cryptochromes: enabling plants and animals to determine circadian time. Cell, 2003, 114, 537-43.	28.9	117
20	Expression of nuclear and plastid genes for photosynthesis-specific proteins during tomato fruit development and ripening. Plant Molecular Biology, 1986, 7, 367-376.	3.9	95
21	Cryptochrome 1 controls tomato development in response to blue light. Plant Journal, 1999, 18, 551-556.	5.7	87
22	The pef mutants of Arabidopsis thaliana define lesions early in the phytochrome signaling pathway. Plant Journal, 1996, 10, 1103-1110.	5.7	85
23	The Lucretian swerve: The biological basis of human behavior and the criminal justice system. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4499-4504.	7.1	81
24	Intracellular localization of GBF proteins and blue light-induced import of GBF2 fusion proteins into the nucleus of cultured Arabidopsis and soybean cells. Plant Journal, 1997, 11, 967-982.	5.7	74
25	Photocontrol of the Expression of Genes Encoding Chlorophyll <i>a/b</i> Binding Proteins and Small Subunit of Ribulose-1,5-Bisphosphate Carboxylase in Etiolated Seedlings of <i>Lycopersicon esculentum</i> (L.) and <i>Nicotiana tabacum</i> (L.). Plant Physiology, 1990, 93, 990-997.	4.8	66
26	Reiteration frequency of the gene coding for the small subunit of ribulose-1,5-bisphosphate carboxylase. Cell, 1979, 17, 383-388.	28.9	51
27	Sequence of the fourth and fifth Photosystem II Type I chlorophyll a/b-binding protein genes of Arabidopsis thaliana and evidence for the presence of a full complement of the extended CAB gene family. Plant Molecular Biology, 1992, 19, 725-733.	3.9	47
28	Molecular characterization of two clusters of genes encoding the Type I CAB polypeptides of PSII in Nicotiana plumbaginifolia. Plant Molecular Biology, 1987, 10, 117-126.	3.9	44
29	The cryptochrome family of blue/UV-A photoreceptors. Journal of Plant Research, 1998, 111, 267-270.	2.4	22
30	Phytochrome-induced expression of lig1 , a homologue of the fission yeast cell-cycle checkpoint gene hus1 , is associated with the developmental switch in Physarum polycephalum plasmodia. Current Genetics, 1999, 36, 86-93.	1.7	21
31	An Enzyme Similar to Animal Type II Photolyases Mediates Photoreactivation in Arabidopsis. Plant Cell, 1997, 9, 199.	6.6	20
32	Nuclear factors binding to the extensin promoter exhibit differential activity in carrot protoplasts and cells. Plant Molecular Biology, 1992, 18, 739-748.	3.9	11
33	Chimeric Proteins between cry1 and cry2 Arabidopsis Blue Light Photoreceptors Indicate Overlapping Functions and Varying Protein Stability. Plant Cell, 1998, 10, 197.	6.6	10
34	Genetic Engineering of Nuclear-Encoded Components of the Photosynthetic Apparatus in Arabidopsis. ACS Symposium Series, 1988, , 279-295.	0.5	5
35	Targeting Nuclear Gene Products into Chloroplasts. Plant Gene Research, 1987, , 321-339.	0.4	4
36	Reply to AnckarsÃær: A belief in free will is based on faith. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, .	7.1	3

#	Article	IF	CITATIONS
37	Plant Cryptochromes and Signaling. , 2005, , 247-258.		2
38	The Signaling Mechanism of Arabidopsis CRY1 Involves Direct Interaction with COP1. Plant Cell, 2001, 13, 2573.	6.6	1
39	Cryptochrome Overview. , 2005, , 121-130.		1
40	Profile of Anthony R. Cashmore. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 443-445.	7.1	1
41	Physiological and Molecular Characteristics of Plant Circadian Clocks. , 2005, , 185-209.		0
42	The Characterisation of Leaf Messenger RNAs and their Use in the Synthesis of Complementary DNAs. , 1980, , 363-372.		0