Michela A Denti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1054739/publications.pdf Version: 2024-02-01

MICHELA A DENTI

#	Article	IF	CITATIONS
1	Delivery of oligonucleotideâ€based therapeutics: challenges and opportunities. EMBO Molecular Medicine, 2021, 13, e13243.	3.3	181
2	Circulating miRNAs as Biomarkers for Neurodegenerative Disorders. Molecules, 2014, 19, 6891-6910.	1.7	167
3	Body-wide gene therapy of Duchenne muscular dystrophy in the mdx mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3758-3763.	3.3	134
4	Delivery is key: lessons learnt from developing spliceâ€switching antisense therapies. EMBO Molecular Medicine, 2017, 9, 545-557.	3.3	119
5	Involvement of the Intracellular Ion Channel CLIC1 in Microglia-Mediated Â-Amyloid-Induced Neurotoxicity. Journal of Neuroscience, 2004, 24, 5322-5330.	1.7	104
6	Virp1 Is a Host Protein with a Major Role in <i>Potato Spindle Tuber Viroid</i> Infection in <i>Nicotiana</i> Plants. Journal of Virology, 2007, 81, 12872-12880.	1.5	90
7	DNA methylation variations are required for epithelial-to-mesenchymal transition induced by cancer-associated fibroblasts in prostate cancer cells. Oncogene, 2017, 36, 5551-5566.	2.6	88
8	microRNA and Lung Cancer. Advances in Experimental Medicine and Biology, 2015, 889, 153-177.	0.8	83
9	Characterization of the RNA motif responsible for the specific interaction of potato spindle tuber viroid RNA (PSTVd) and the tomato protein Virp1. Nucleic Acids Research, 2003, 31, 5534-5543.	6.5	82
10	MicroRNAs as lung cancer biomarkers. World Journal of Clinical Oncology, 2014, 5, 604.	0.9	82
11	The miR-15/107 Family of microRNA Genes Regulates CDK5R1/p35 with Implications for Alzheimer's Disease Pathogenesis. Molecular Neurobiology, 2017, 54, 4329-4342.	1.9	81
12	Exon-Skipping Antisense Oligonucleotides to Correct Missplicing in Neurogenetic Diseases. Nucleic Acid Therapeutics, 2014, 24, 69-86.	2.0	77
13	A new vector, based on the PolII promoter for the U1 snRNA gene, for the expression of siRNAs in mammalian cells. Molecular Therapy, 2004, 10, 191-199.	3.7	76
14	Selection of reference genes is critical for miRNA expression analysis in human cardiac tissue. A focus on atrial fibrillation. Scientific Reports, 2017, 7, 41127.	1.6	74
15	microRNAs Make the Call in Cancer Personalized Medicine. Frontiers in Cell and Developmental Biology, 2017, 5, 86.	1.8	67
16	Long-Term Benefit of Adeno-Associated Virus/Antisense-Mediated Exon Skipping in Dystrophic Mice. Human Gene Therapy, 2008, 19, 601-608.	1.4	65
17	Identification of new p53 target microRNAs by bioinformatics and functional analysis. BMC Cancer, 2013, 13, 552.	1.1	51
18	Heterogeneity of Large Cell Carcinoma of the Lung. American Journal of Clinical Pathology, 2011, 136, 773-782.	0.4	48

Michela A Denti

#	Article	IF	CITATIONS
19	Short interfering RNAs specific for potato spindle tuber viroid are found in the cytoplasm but not in the nucleus. Plant Journal, 2004, 37, 762-769.	2.8	47
20	miR-205 Expression Levels in Nonsmall Cell Lung CancerDo Not Always Distinguish Adenocarcinomas From Squamous Cell Carcinomas. American Journal of Surgical Pathology, 2011, 35, 268-275.	2.1	47
21	Chimeric Adeno-Associated Virus/Antisense U1 Small Nuclear RNA Effectively Rescues Dystrophin Synthesis and Muscle Function by Local Treatment of mdx Mice. Human Gene Therapy, 2006, 17, 565-574.	1.4	45
22	Circulating miR-127-3p as a Potential Biomarker for Differential Diagnosis in Frontotemporal Dementia. Journal of Alzheimer's Disease, 2018, 65, 455-464.	1.2	43
23	A Cross-Platform Comparison of Affymetrix and Agilent Microarrays Reveals Discordant miRNA Expression in Lung Tumors of c-Raf Transgenic Mice. PLoS ONE, 2013, 8, e78870.	1.1	43
24	Preferential silencing of a common dominant rhodopsin mutation does not inhibit retinal degeneration in a transgenic model. Molecular Therapy, 2006, 14, 692-699.	3.7	39
25	The short-term impact of probiotic consumption on the oral cavity microbiome. Scientific Reports, 2018, 8, 10476.	1.6	36
26	Measurements Methods for the Development of MicroRNA-Based Tests for Cancer Diagnosis. International Journal of Molecular Sciences, 2021, 22, 1176.	1.8	35
27	Enhanced microbial diversity in the saliva microbiome induced by short-term probiotic intake revealed by 16S rRNA sequencing on the IonTorrent PGM platform. Journal of Biotechnology, 2014, 190, 30-39.	1.9	34
28	An electroporation protocol for efficient DNA transfection in PC12 cells. Cytotechnology, 2014, 66, 543-553.	0.7	33
29	Plasma microRNA profiling distinguishes patients with frontotemporal dementia from healthy subjects. Neurobiology of Aging, 2019, 84, 240.e1-240.e12.	1.5	32
30	MIR-NATs repress MAPT translation and aid proteostasis in neurodegeneration. Nature, 2021, 594, 117-123.	13.7	29
31	Blockade of chloride intracellular ion channel 1 stimulates AÎ ² phagocytosis. Journal of Neuroscience Research, 2008, 86, 2488-2498.	1.3	25
32	Reduced miR-659-3p Levels Correlate with Progranulin Increase in Hypoxic Conditions: Implications for Frontotemporal Dementia. Frontiers in Molecular Neuroscience, 2016, 9, 31.	1.4	25
33	A network of RNA and protein interactions in Fronto Temporal Dementia. Frontiers in Molecular Neuroscience, 2015, 8, 9.	1.4	22
34	Circulating microRNAs in Neurodegenerative Diseases. Exs, 2015, 106, 151-169.	1.4	21
35	Upregulation of miR-133b and miR-328 in Patients With Atrial Dilatation: Implications for Stretch-Induced Atrial Fibrillation. Frontiers in Physiology, 2019, 10, 1133.	1.3	21
36	Splicing-Correcting Therapeutic Approaches for Retinal Dystrophies: Where Endogenous Gene Regulation and Specificity Matter. , 2014, 55, 3285.		20

Michela A Denti

#	Article	IF	CITATIONS
37	New Platform for the Direct Profiling of microRNAs in Biofluids. Analytical Chemistry, 2019, 91, 5874-5880.	3.2	17
38	Double-target Antisense U1snRNAs Correct Mis-splicing Due to c.639+861C>T and c.639+919G>A GLA Deep Intronic Mutations. Molecular Therapy - Nucleic Acids, 2016, 5, e380.	2.3	14
39	PMP70 knock-down generates oxidative stress and pro-inflammatory cytokine production in C6 glial cells. Neurochemistry International, 2009, 54, 37-42.	1.9	12
40	A New Splicing Isoform ofCacna2d4Mimicking the Effects of c.2451insC Mutation in the Retina: Novel Molecular and Electrophysiological Insights. , 2015, 56, 4846.		12
41	RNAi-mediated silencing of ABCD3 gene expression in rat C6 glial cells: A model system to study PMP70 function. Neurochemistry International, 2008, 52, 1106-1113.	1.9	11
42	DNMT3A epigenetically regulates key microRNAs involved in epithelial-to-mesenchymal transition in prostate cancer. Carcinogenesis, 2021, 42, 1449-1460.	1.3	10
43	A loxP-Containing pol II Promoter for RNA Interference is Reversibly Regulated by Cre Recombinase. RNA Biology, 2005, 2, 86-92.	1.5	9
44	Statistical analysis of a Bayesian classifier based on the expression of miRNAs. BMC Bioinformatics, 2015, 16, 287.	1.2	7
45	miR375-3p Distinguishes Low-Grade Neuroendocrine From Non-neuroendocrine Lung Tumors in FFPE Samples. Frontiers in Molecular Biosciences, 2020, 7, 86.	1.6	7
46	Exon Skipping Through Chimeric Antisense <i>U1</i> snRNAs to Correct Retinitis Pigmentosa GTPase-Regulator (<i>RPGR</i>) Splice Defect. Nucleic Acid Therapeutics, 2022, 32, 333-349.	2.0	7
47	Integrative microRNAome analysis of skeletal muscle of Colossoma macropomum (tambaqui), Piaractus mesopotamicus (pacu), and the hybrid tambacu, based on next-generation sequencing data. BMC Genomics, 2021, 22, 237.	1.2	3
48	Delivery of Antisense RNA Therapeutics: Turning Negative Results Into a Positive Development. Nucleic Acid Therapeutics, 2021, 31, 183-184.	2.0	3
49	Identification of miRNAs Bound to an RNA of Interest by MicroRNA Capture Affinity Technology (miR-CATCH). Methods in Molecular Biology, 2022, 2404, 207-218.	0.4	1
50	Northwestern Techniques for the Identification of RNA-binding Proteins from cDNA Expression Libraries and the Analysis of RNA-Protein Interactions. , 0, , 710-728.		0
51	712. AAV-Mediated Allele-Specific RNA Interference of a Common Dominant Rhodopsin Mutation Causing Retinitis Pigmentosa. Molecular Therapy, 2006, 13, S275.	3.7	0
52	Oligonucleotide Therapy. , 2017, , 191-217.		0
53	MiRNA-QC-and-Diagnosis: An R package for diagnosis based on MiRNA expression. SoftwareX, 2020, 12, 100569.	1.2	0
54	Abstract 2286: p53-miR-dependent post-transcriptional circuits: mechanisms, targets and		0

inter-individual variation. , 2012, , .

#	Article	IF	CITATIONS
55	Abstract 4199: CDKN2A/p16INK4a 5′UTR variants in melanoma predisposition: Lost in translation, somewhere. , 2012, , .		0