Zhijun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1054675/publications.pdf

Version: 2024-02-01

108	3,704	36	56
papers	citations	h-index	g-index
112	112	112	4323
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Naturalâ€Productâ€Derived Carbon Dots: From Natural Products to Functional Materials. ChemSusChem, 2018, 11, 11-24.	6.8	278
2	Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles. Chemical Communications, 2015, 51, 431-434.	4.1	168
3	Designing Hybrid Chiral Photonic Films with Circularly Polarized Room-Temperature Phosphorescence. ACS Nano, 2020, 14, 11130-11139.	14.6	130
4	Photon Upconversion Lithography: Patterning of Biomaterials Using Nearâ€Infrared Light. Advanced Materials, 2015, 27, 2203-2206.	21.0	119
5	Multifunctional chiral nematic cellulose nanocrystals/glycerol structural colored nanocomposites for intelligent responsive films, photonic inks and iridescent coatings. Journal of Materials Chemistry C, 2018, 6, 5391-5400.	5.5	103
6	Novel Quercetin Aggregationâ€Induced Emission Luminogen (AlEgen) with Excitedâ€State Intramolecular Proton Transfer for In Vivo Bioimaging. Advanced Functional Materials, 2018, 28, 1706196.	14.9	100
7	Deep Eutectic Solvent-Assisted In Situ Wood Delignification: A Promising Strategy To Enhance the Efficiency of Wood-Based Solar Steam Generation Devices. ACS Applied Materials & Interfaces, 2019, 11, 26032-26037.	8.0	97
8	Carbon Dots as a Promising Green Photocatalyst for Free Radical and ATRPâ€Based Radical Photopolymerization with Blue LEDs. Angewandte Chemie - International Edition, 2020, 59, 3166-3171.	13.8	95
9	Melanin-Inspired Design: Preparing Sustainable Photothermal Materials from Lignin for Energy Generation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 7600-7607.	8.0	87
10	Seeking Brightness from Nature: J-Aggregation-Induced Emission in Cellulolytic Enzyme Lignin Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 3169-3175.	6.7	80
11	Tunable Upconverted Circularly Polarized Luminescence in Cellulose Nanocrystal Based Chiral Photonic Films. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23512-23519.	8.0	79
12	Assembling semiconductor quantum dots in hierarchical photonic cellulose nanocrystal films: circularly polarized luminescent nanomaterials as optical coding labels. Journal of Materials Chemistry C, 2019, 7, 13794-13802.	5.5	79
13	Preparation of Carbon Dots for Cellular Imaging by the Molecular Aggregation of Cellulolytic Enzyme Lignin. Langmuir, 2017, 33, 5786-5795.	3.5	75
14	Woodâ€Derived Carbon Materials and Lightâ€Emitting Materials. Advanced Materials, 2021, 33, e2000596.	21.0	75
15	Upconvertingâ€Nanoparticleâ€Assisted Photochemistry Induced by Lowâ€Intensity Nearâ€Infrared Light: How Low Can We Go?. Chemistry - A European Journal, 2015, 21, 9165-9170.	3.3	74
16	Nearâ€Infrared Photoinduced Coupling Reactions Assisted by Upconversion Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, 12195-12199.	13.8	65
17	Lignin: a sustainable photothermal block for smart elastomers. Green Chemistry, 2022, 24, 823-836.	9.0	64
18	Seeking value from biomass materials: preparation of coffee bean shell-derived fluorescent carbon dots <i>via</i> molecular aggregation for antioxidation and bioimaging applications. Materials Chemistry Frontiers, 2018, 2, 1269-1275.	5.9	62

#	Article	IF	Citations
19	Antifungal activities of Cunninghamia lanceolata heartwood extractives. BioResources, 2011, 6, 606-614.	1.0	62
20	Nature-inspired design: p-toluenesulfonic acid-assisted hydrothermally engineered wood for solar steam generation. Nano Energy, 2020, 78, 105322.	16.0	61
21	Clustering-Triggered Emission of Carboxymethylated Nanocellulose. Frontiers in Chemistry, 2019, 7, 447.	3.6	55
22	One-step hydrothermal synthesis of fluorescent nanocrystalline cellulose/carbon dot hydrogels. Carbohydrate Polymers, 2017, 175, 7-17.	10.2	54
23	Sustainable Use of Coffee Husks For Reinforcing Polyethylene Composites. Journal of Polymers and the Environment, 2018, 26, 48-58.	5.0	49
24	Fabrication of nano-crystalline cellulose with phosphoric acid and its full application in a modified polyurethane foam. Polymer Degradation and Stability, 2013, 98, 1940-1944.	5.8	45
25	Upconversionâ€Nanoparticleâ€Assisted Radical Polymerization at <i>λ</i> =974â€nm and the Generation of Acidic Cations. ChemPhotoChem, 2017, 1, 499-503.	3.0	45
26	Preparation and Characterization of Antioxidative and UV-Protective Larch Bark Tannin/PVA Composite Membranes. Molecules, 2018, 23, 2073.	3.8	45
27	Synthesis, antimicrobial activity of Schiff base compounds of cinnamaldehyde and amino acids. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 809-813.	2.2	44
28	Molecular Glue Strategy: Large-Scale Conversion of Clustering-Induced Emission Luminogen to Carbon Dots. ACS Applied Materials & Interfaces, 2019, 11, 19301-19307.	8.0	44
29	Simultaneous removal of Pb2+, Cu2+ and Cd2+ ions from wastewater using hierarchical porous polyacrylic acid grafted with lignin. Journal of Hazardous Materials, 2020, 392, 122208.	12.4	44
30	Distinct Sustainable Carbon Nanodots Enable Free Radical Photopolymerization, Photoâ€ATRP and Photoâ€CuAAC Chemistry. Angewandte Chemie - International Edition, 2021, 60, 10983-10991.	13.8	44
31	"lrregular―aggregation-induced emission luminogens. Coordination Chemistry Reviews, 2020, 418, 213358.	18.8	44
32	Formation Mechanisms, Structure, Solution Behavior, and Reactivity of Aminodiborane. Journal of the American Chemical Society, 2015, 137, 12406-12414.	13.7	42
33	Engineering a ratiometric fluorescent sensor membrane containing carbon dots for efficient fluoride detection and removal. Chemical Engineering Journal, 2020, 399, 125741.	12.7	41
34	Upconversion Nanocarriers Encapsulated with Photoactivatable Ru Complexes for Nearâ€Infrared Lightâ€Regulated Enzyme Activity. Small, 2017, 13, 1700997.	10.0	40
35	Wound Dressings Based on Chitosan-Dialdehyde Cellulose Nanocrystals-Silver Nanoparticles: Mechanical Strength, Antibacterial Activity and Cytotoxicity. Polymers, 2018, 10, 673.	4.5	40
36	Natural Quercetin AlEgen Composite Film with Antibacterial and Antioxidant Properties for in Situ Sensing of Al ³⁺ Residues in Food, Detecting Food Spoilage, and Extending Food Storage Times. ACS Applied Bio Materials, 2018, 1, 636-642.	4.6	39

#	Article	IF	CITATIONS
37	Characterization of Type-II Acetylated Cellulose Nanocrystals with Various Degree of Substitution and Its Compatibility in PLA Films. Polymers, 2017, 9, 346.	4.5	36
38	Sustainable Carbon Dot-Based AlEgens: Promising Light-Harvesting Materials for Enhancing Photosynthesis. ACS Sustainable Chemistry and Engineering, 2021, 9, 4139-4145.	6.7	35
39	Seeking brightness from nature: Sustainable carbon dots-based AlEgens with tunable emission wavelength from natural rosin. Chemical Engineering Journal, 2021, 413, 127457.	12.7	34
40	Donorâ€Acceptor Molecule Based Highâ€Performance Photothermal Organic Material for Efficient Water Purification and Electricity Generation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	34
41	Identification of common features of vehicle motion under drowsy/distracted driving: A case study in Wuhan, China. Accident Analysis and Prevention, 2015, 81, 251-259.	5.7	33
42	Nearâ€Infrared Light Driven Photopolymerization Based On Photon Upconversion. ChemPhotoChem, 2019, 3, 1077-1083.	3.0	33
43	One-step synthesis of self-quenching-resistant biomass-based solid-state fluorescent carbon dots with high yield for white lighting emitting diodes. Dyes and Pigments, 2021, 185, 108953.	3.7	33
44	Manipulating pH using near-infrared light assisted by upconverting nanoparticles. Chemical Communications, 2016, 52, 13959-13962.	4.1	32
45	Biomass-derived solar-to-thermal materials: promising energy absorbers to convert light to mechanical motion. Journal of Materials Chemistry A, 2019, 7, 4002-4008.	10.3	32
46	Modification of chemical reactivity of enzymatic hydrolysis lignin by ultrasound treatment in dilute alkaline solutions. International Journal of Biological Macromolecules, 2016, 93, 1279-1284.	7.5	29
47	A ratiometric fluorescent hydrogel of controlled thickness prepared continuously using microtomy for the detection and removal of $Hg(II)$. Chemical Engineering Journal, 2021, 426, 131296.	12.7	29
48	Natural phenolic compound–iron complexes: sustainable solar absorbers for wood-based solar steam generation devices. RSC Advances, 2020, 10, 1152-1158.	3.6	28
49	Sustainable Afterglow Roomâ€Temperature Phosphorescence Emission Materials Generated Using Natural Phenolics. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
50	Solar-powered "pump―for uranium recovery from seawater. Chemical Engineering Journal, 2021, 416, 129486.	12.7	27
51	Toughness and crystallization enhancement in wood fiber-reinforced polypropylene composite through controlling matrix nucleation. Journal of Materials Science, 2018, 53, 6542-6551.	3.7	26
52	A new drug carrier with oxygen generation function for modulating tumor hypoxia microenvironment in cancer chemotherapy. Colloids and Surfaces B: Biointerfaces, 2019, 173, 335-345.	5.0	26
53	Exploring the Circular Polarization Capacity from Chiral Cellulose Nanocrystal Films for a Photoâ€Controlled Chiral Helix of Supramolecular Polymers. Angewandte Chemie - International Edition, 2022, 61, .	13.8	26
54	"Cellulose Spacer―Strategy: Anti-Aggregation-Caused Quenching Membrane for Mercury Ion Detection and Removal. ACS Sustainable Chemistry and Engineering, 2019, 7, 15182-15189.	6.7	25

#	Article	IF	Citations
55	Preparation of Biomass-Based Carbon Dots with Aggregation Luminescence Enhancement from Hydrogenated Rosin for Biological Imaging and Detection of Fe ³⁺ . ACS Omega, 2020, 5, 11842-11848.	3.5	25
56	Ultra-small amorphous carbon dots: preparation, photoluminescence properties, and their application as TiO2 photosensitizers. Journal of Materials Science, 2019, 54, 5280-5293.	3.7	24
57	Fluorescent Poly(vinyl alcohol) Films Containing Chlorogenic Acid Carbon Nanodots for Food Monitoring. ACS Applied Nano Materials, 2020, 3, 7611-7620.	5.0	23
58	A nanocomposite probe consisting of carbon quantum dots and phosphotungstic acid for fluorometric determination of chromate(VI) with improved selectivity. Mikrochimica Acta, 2018, 185, 470.	5.0	20
59	Multiphoton Excitation of Upconverting Nanoparticles in Pulsed Regime. Analytical Chemistry, 2016, 88, 1468-1475.	6.5	18
60	Developing Flexible Quinacridoneâ€Derivativesâ€Based Photothermal Evaporaters for Solar Steam and Thermoelectric Power Generation. Chemistry - A European Journal, 2022, 28, .	3.3	17
61	Kohlenstoffâ€Nanopunkte als Photokatalysatoren für die freie radikalische und ATRPâ€basierte radikalische Photopolymerisation mit blauen LEDs. Angewandte Chemie, 2020, 132, 3192-3197.	2.0	16
62	Quantitative structure–activity relationship of antifungal activity of rosin derivatives. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 347-354.	2.2	14
63	Effect of nanocellulose/chitosan composite coatings on cucumber quality and shelf life. Toxicological and Environmental Chemistry, 2016, 98, 450-461.	1.2	14
64	Sensitive Mechanofluorochromic Carbon Dotâ∈Based AlEgens: Promising Reporting Components for Selfâ∈Sensing Plastics. Advanced Optical Materials, 2021, 9, 2101092.	7.3	14
65	Lichtgesteuerte Kupplungsreaktionen im nahen Infrarot mittels Aufkonvertierungsâ€Nanopartikeln. Angewandte Chemie, 2016, 128, 12382-12386.	2.0	13
66	Thermogravimetric analyses (TGA) of lignins isolated from the residue of corn stover bioethanol (CSB) production. Holzforschung, 2016, 70, 1175-1182.	1.9	13
67	Enzymatic biocatalysis of bamboo chemical constituents to impart antimold properties. Wood Science and Technology, 2018, 52, 619-635.	3.2	13
68	Integrating photon up- and down-conversion to produce efficient light-harvesting materials for enhancing natural photosynthesis. Journal of Materials Chemistry A, 2021, 9, 24308-24314.	10.3	13
69	Lignin Nanoparticles: Promising Sustainable Building Blocks of Photoluminescent and Haze Films for Improving Efficiency of Solar Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 33536-33545.	8.0	13
70	Quantitative Förster Resonance Energy Transfer: Efficient Light Harvesting for Sequential Photoâ€Thermoâ€Electric Conversion. Small, 2021, 17, e2103172.	10.0	13
71	Screening, Synthesis, and QSAR Research on Cinnamaldehyde-Amino Acid Schiff Base Compounds as Antibacterial Agents. Molecules, 2018, 23, 3027.	3.8	12
72	Near-Infrared-Detached Adhesion Enabled by Upconverting Nanoparticles. IScience, 2020, 23, 100832.	4.1	12

#	Article	IF	CITATIONS
73	The Stability of Diphosphinoâ€Boryl PBP Pincer Backbone: PBP to POP Ligand Hydrolysis. Chemistry - an Asian Journal, 2021, 16, 2489-2494.	3.3	11
74	Which Type of Pincer Complex Is Thermodynamically More Stable? Understanding the Structures and Relative Bond Strengths of Group 10 Metal Complexes Supported by Benzene-Based PYCYP Pincer Ligands. Inorganic Chemistry, 2021, 60, 18924-18937.	4.0	10
75	Design of a ZnO@Plant Polyphenol/Poly(vinyl alcohol) Film via Plant Polyphenol-Induced Cross-Linking and Its Enhanced UV Shielding and Antibacterial Performance. ACS Sustainable Chemistry and Engineering, 2022, 10, 9369-9380.	6.7	10
76	Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship. Royal Society Open Science, 2017, 4, 170516.	2.4	9
77	Characterization and insecticidal activity of sucrose octanoates. Agronomy for Sustainable Development, 2008, 28, 239-245.	5.3	8
78	Quantitative Structure Activity Relationship of Cinnamaldehyde Compounds against Wood-Decaying Fungi. Molecules, 2016, 21, 1563.	3.8	8
79	Quantitative Analysis of Solubility Parameters and Surface Properties of Larch Bark Proanthocyanidins. Polymers, 2020, 12, 2800.	4.5	8
80	Preparation of a lignin-based composite and its properties. BioResources, 2011, 6, 1532-1542.	1.0	8
81	Multipurpose Solar-Thermal Hydrogel Platform for Desalination of Seawater and Subsequent Collection of Atmospheric Water. ACS ES&T Water, 2023, 3, 1740-1746.	4.6	8
82	A composite carbon-based solid acid-supported palladium catalyst (Pd/C-SO ₃ H) for hydrogenolysis of plant-derived polymeric proanthocyanidins. RSC Advances, 2020, 10, 20665-20675.	3.6	7
83	Simple, green, ultrasound-assisted preparation of novel core–shell microcapsules from octyl methoxycinnamate and oligomeric proanthocyanidins for UV-stable sunscreen. RSC Advances, 2021, 11, 6374-6382.	3.6	7
84	Composite films with excellent mechanical, antioxidant and UV-shielding properties prepared from oligomeric proanthocyanidin nanospheres and poly(vinyl alcohol). Industrial Crops and Products, 2021, 172, 114054.	5.2	7
85	Occurrence and distribution of cyclic-alkane-consuming psychrophilic bacteria in the Yellow Sea and East China Sea. Journal of Hazardous Materials, 2022, 427, 128129.	12.4	7
86	Boosting solar-thermal-electric conversion of thermoelectrochemical cells by construction of a carboxymethylcellulose-interpenetrated polyacrylamide network. Journal of Materials Chemistry A, 2022, 10, 7785-7791.	10.3	7
87	Sustainable Afterglow Roomâ€Temperature Phosphorescence Emission Materials Generated Using Natural Phenolics. Angewandte Chemie, 2022, 134, .	2.0	7
88	Fire-retardant mechanism of fire-retardant FRW by FTIR. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2006, 1 , 438-444.	0.2	6
89	Application of hinokitiol potassium salt for wood preservative. Journal of Environmental Sciences, 2013, 25, S32-S35.	6.1	6
90	Preparation of a Smart and Portable Film for in Situ Sensing of Iron Microcorrosion. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4981-4985.	8.0	6

#	Article	IF	CITATIONS
91	Biomass-Based Polymer Nanoparticles With Aggregation-Induced Fluorescence Emission for Cell Imaging and Detection of Fe3+ Ions. Frontiers in Chemistry, 2020, 8, 563.	3.6	6
92	Fabrication of ZnO@Plant Polyphenols/Cellulose as Active Food Packaging and Its Enhanced Antibacterial Activity. International Journal of Molecular Sciences, 2022, 23, 5218.	4.1	6
93	Depolymerization of proanthocyanidins and application exploration in the field of preparation of flexible materials. New Journal of Chemistry, 2020, 44, 19323-19336.	2.8	5
94	Seeking Answers from Tradition: Facile Preparation of Durable Adhesive Hydrogel Using Natural Quercetin. IScience, 2020, 23, 101342.	4.1	4
95	Multinuclear transition metal-containing polyoxometalates constructed from Nb/W mixed-addendum precursors: synthesis, structures and catalytic performance. Dalton Transactions, 2021, 50, 8690-8695.	3.3	4
96	Phloretin loaded porous starch (Ph-PS): Preparation, characterization, in vitro release and protective effect against oxidative stress in vivo zebrafish model. International Journal of Biological Macromolecules, 2021, 193, 2047-2053.	7.5	4
97	Reactivity improvement of cellulolytic enzyme lignin via mild hydrothermal modification. Bioorganic Chemistry, 2017, 75, 173-180.	4.1	3
98	A Structure Comparison of Ni(II) Complexes Supported by PNCNP and POCOP Pincer Ligands. ChemistrySelect, 2020, 5, 5205-5209.	1.5	3
99	Few-Layered Metal–Organic Framework Nanosheets as Catalysts for the Synthesis of 2,3-Dihydroquinazolinone and Propargylamines. ACS Applied Nano Materials, 2021, 4, 12108-12118.	5.0	3
100	The Surface Structure Origin of Carbon Fiber with Enhanced Electrothermal Properties Prepared by Modification of Graphene Coating. Journal of Electronic Materials, 2022, 51, 4288-4298.	2.2	3
101	Preparation of Nanocrystalline Cellulose from Corncob Acid-Hydrolysis Residue and Its Reinforcement Capabilities on Polyvinyl Alcohol Membranes. Polymers and Polymer Composites, 2014, 22, 675-682.	1.9	2
102	Synthesis and antifungal property of <i>N,N </i> à€²-bis(trans-cinnamaldehyde)-1,2-diiminoethane and its derivatives. Toxicological and Environmental Chemistry, 2015, 97, 429-438.	1.2	2
103	Experimental and first-principle computational exploration on biomass cellulose/magnesium hydroxide composite: Local structure, interfacial interaction and antibacterial property. International Journal of Biological Macromolecules, 2021, 191, 584-590.	7.5	2
104	Exploring the circular polarization capacity from chiral cellulose nanocrystal films for photo a feontrolled chiral helix of supramolecular polymers. Angewandte Chemie, 0, , .	2.0	2
105	The distribution and geological significance of carbazole compounds in Silurian paleo-pools of the Tarim Basin, Northwest China. Diqiu Huaxue, 2008, 27, 1-8.	0.5	1
106	Two New Diterpene Phenols from <i>Calocedrus decurrans</i> . Natural Product Communications, 2010, 5, 1934578X1000500.	0.5	0
107	Donorâ€Acceptor Molecule Based High Performance Photothermal Organic Material for Efficient Waterâ€Electric Cogeneration. Angewandte Chemie, 0, , .	2.0	0
108	Contrasting vertical distribution between prokaryotes and fungi in different water masses on the Ninety-East Ridge, Southern Indian Ocean. Journal of Oceanology and Limnology, 0, , 1.	1.3	0