Matti Stenroos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10545529/publications.pdf

Version: 2024-02-01

430874 434195 1,278 36 18 31 citations h-index g-index papers 44 44 44 1128 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Multi-locus transcranial magnetic stimulation system for electronically targeted brain stimulation. Brain Stimulation, 2022, 15, 116-124.	1.6	38
2	Looking through the windows: a study about the dependency of phase-coupling estimates on the data length. Journal of Neural Engineering, 2022, 19, 016039.	3.5	6
3	Looking through the windows: a study about the dependency of phase-coupling estimates on the data length. Journal of Neural Engineering, 2022, , .	3.5	2
4	Closed-loop optimization of transcranial magnetic stimulation with electroencephalography feedback. Brain Stimulation, 2022, 15, 523-531.	1.6	40
5	Prefrontal theta phase-dependent rTMS-induced plasticity of cortical and behavioral responses in human cortex. Brain Stimulation, 2022, 15, 391-402.	1.6	13
6	Towards an objective evaluation of EEG/MEG source estimation methods – The linear approach. Neurolmage, 2022, 255, 119177.	4.2	32
7	Prefrontal Theta-Phase Synchronized Brain Stimulation With Real-Time EEG-Triggered TMS. Frontiers in Human Neuroscience, 2021, 15, 691821.	2.0	16
8	Spatial sampling of MEG and EEG based on generalized spatial-frequency analysis and optimal design. Neurolmage, 2021, 245, 118747.	4.2	21
9	Individual head models for estimating the TMS-induced electric field in rat brain. Scientific Reports, 2020, 10, 17397.	3.3	11
10	Comparison of beamformer implementations for MEG source localization. Neurolmage, 2020, 216, 116797.	4.2	48
11	Concurrent electrophysiological and hemodynamic measurements of evoked neural oscillations in human visual cortex using sparsely interleaved fast fMRI and EEG. NeuroImage, 2020, 217, 116910.	4.2	2
12	Real-time computation of the TMS-induced electric field in a realistic head model. NeuroImage, 2019, 203, 116159.	4.2	35
13	Short-interval intracortical inhibition in human primary motor cortex: A multi-locus transcranial magnetic stimulation study. Neurolmage, 2019, 203, 116194.	4.2	28
14	EEG/MEG Source Estimation and Spatial Filtering: The Linear Toolkit. , 2019, , 1-37.		1
15	The impact of improved MEG–MRI co-registration on MEG connectivity analysis. NeuroImage, 2019, 197, 354-367.	4.2	40
16	Influence of Co-Registration Errors on the Performance of Anatomical Constraints in MEG Source Connectivity Analysis*., 2019, , .		0
17	EEG/MEG Source Estimation and Spatial Filtering: The Linear Toolkit. , 2019, , 167-203.		8
18	Truncated RAP-MUSIC (TRAP-MUSIC) for MEG and EEG source localization. NeuroImage, 2018, 167, 73-83.	4.2	30

#	Article	IF	Citations
19	Individual Activation Patterns After the Stimulation of Different Motor Areas: A Transcranial Magnetic Stimulation–Electroencephalography Study. Brain Connectivity, 2018, 8, 420-428.	1.7	18
20	Requirements for Coregistration Accuracy in On-Scalp MEG. Brain Topography, 2018, 31, 931-948.	1.8	40
21	Coil optimisation for transcranial magnetic stimulation in realistic head geometry. Brain Stimulation, 2017, 10, 795-805.	1.6	59
22	Measuring MEG closer to the brain: Performance of on-scalp sensor arrays. NeuroImage, 2017, 147, 542-553.	4.2	202
23	Recovering TMS-evoked EEG responses masked by muscle artifacts. Neurolmage, 2016, 139, 157-166.	4.2	68
24	Integral equations and boundary-element solution for static potential in a general piece-wise homogeneous volume conductor. Physics in Medicine and Biology, 2016, 61, N606-N617.	3.0	15
25	The magnetic field inside a layered anisotropic spherical conductor due to internal sources. Journal of Applied Physics, 2016, 119, 023901.	2.5	1
26	Incorporating and Compensating Cerebrospinal Fluid in Surface-Based Forward Models of Magneto-and Electroencephalography. PLoS ONE, 2016, 11, e0159595.	2.5	51
27	Assessment of Myocardial Infarct Size with Body Surface Potential Mapping: Validation against Contrastâ€Enhanced Cardiac Magnetic Resonance Imaging. Annals of Noninvasive Electrocardiology, 2015, 20, 240-252.	1.1	2
28	Dealing with artifacts in TMS-evoked EEG. , 2015, 2015, 230-3.		28
29	A framework for the design of flexible crossâ€ŧalk functions for spatial filtering of EEG/MEG data: DeFleCT. Human Brain Mapping, 2014, 35, 1642-1653.	3.6	51
30	Comparison of minimum-norm estimation and beamforming in electrocardiography with acute ischemia. Physiological Measurement, 2014, 35, 623-638.	2.1	4
31	Investigations of sensitivity and resolution of ECG and MCG in a realistically shaped thorax model. Physics in Medicine and Biology, 2014, 59, 7141-7158.	3.0	16
32	Comparison of three-shell and simplified volume conductor models in magnetoencephalography. Neurolmage, 2014, 94, 337-348.	4.2	93
33	Comparison of spherical and realistically shaped boundary element head models for transcranial magnetic stimulation navigation. Clinical Neurophysiology, 2013, 124, 1995-2007.	1.5	86
34	Minimum-norm cortical source estimation in layered head models is robust against skull conductivity error. Neurolmage, 2013, 81, 265-272.	4.2	48
35	Uncovering neural independent components from highly artifactual TMS-evoked EEG data. Journal of Neuroscience Methods, 2012, 209, 144-157.	2.5	49
36	Boundary Element Computations in the Forward and Inverse Problems of Electrocardiography: Comparison of Collocation and Galerkin Weightings. IEEE Transactions on Biomedical Engineering, 2008, 55, 2124-2133.	4.2	44