Piero Carninci

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1054251/piero-carninci-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

75,687 98 412 273 h-index g-index citations papers 88,352 460 8.41 12.5 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
412	Towards SINEUP-based therapeutics: Design of an synthesized SINEUP RNA <i>Molecular Therapy - Nucleic Acids</i> , 2022 , 27, 1092-1102	10.7	O
411	Complete Transcriptome Analysis by 5Œnd Single-Cell RNA-Seq with Random Priming <i>Methods in Molecular Biology</i> , 2022 , 2490, 141-156	1.4	
410	A field guide to cultivating computational biology. <i>PLoS Biology</i> , 2021 , 19, e3001419	9.7	2
409	SINEUPs: a novel toolbox for RNA therapeutics. Essays in Biochemistry, 2021, 65, 775-789	7.6	3
408	Embryonic LTR retrotransposons supply promoter modules to somatic tissues. <i>Genome Research</i> , 2021 , 31, 1983-1993	9.7	1
407	Antisense RNAs during early vertebrate development are divided in groups with distinct features. <i>Genome Research</i> , 2021 , 31, 995-1010	9.7	3
406	Decoding Neuronal Diversification by Multiplexed Single-cell RNA-Seq. Stem Cell Reports, 2021 , 16, 810	-824	4
405	Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network. <i>Nature Communications</i> , 2021 , 12, 3297	17.4	3
404	FANTOM enters 20th year: expansion of transcriptomic atlases and functional annotation of non-coding RNAs. <i>Nucleic Acids Research</i> , 2021 , 49, D892-D898	20.1	19
403	LETR1 is a lymphatic endothelial-specific lncRNA governing cell proliferation and migration through KLF4 and SEMA3C. <i>Nature Communications</i> , 2021 , 12, 925	17.4	4
402	The choice of negative control antisense oligonucleotides dramatically impacts downstream analysis depending on the cellular background. <i>BMC Genomic Data</i> , 2021 , 22, 33	O	
401	Analysis of Enhancer-Promoter Interactions using CAGE and RADICL-Seq Technologies. <i>Methods in Molecular Biology</i> , 2021 , 2351, 201-210	1.4	2
400	Low Quantity Single Strand CAGE (LQ-ssCAGE) Maps Regulatory Enhancers and Promoters. <i>Methods in Molecular Biology</i> , 2021 , 2351, 67-90	1.4	1
399	Analysis of splice variants of the human protein disulfide isomerase (P4HB) gene. <i>BMC Genomics</i> , 2020 , 21, 766	4.5	1
398	The Secret Life of lncRNAs: Conserved, yet Not Conserved. <i>Cell</i> , 2020 , 181, 512-514	56.2	6
397	Genome-Wide Technologies to Study RNA-Chromatin Interactions. <i>Non-coding RNA</i> , 2020 , 6,	7.1	7
396	Comprehensive Characterization of Transcriptional Activity during Influenza A Virus Infection Reveals Biases in Cap-Snatching of Host RNA Sequences. <i>Journal of Virology</i> , 2020 , 94,	6.6	6

395	Machine-driven parameter screen of biochemical reactions. Nucleic Acids Research, 2020, 48, e37	20.1	
394	Recounting the FANTOM CAGE-Associated Transcriptome. <i>Genome Research</i> , 2020 , 30, 1073-1081	9.7	13
393	RADICL-seq identifies general and cell type-specific principles of genome-wide RNA-chromatin interactions. <i>Nature Communications</i> , 2020 , 11, 1018	17.4	48
392	Dual-initiation promoters with intertwined canonical and TCT/TOP transcription start sites diversify transcript processing. <i>Nature Communications</i> , 2020 , 11, 168	17.4	17
391	A human minisatellite hosts an alternative transcription start site for NPRL3 driving its expression in a repeat number-dependent manner. <i>Human Mutation</i> , 2020 , 41, 807-824	4.7	4
390	Synthetic in⊡itro transcribed lncRNAs (SINEUPs) with chemical modifications enhance target mRNA translation. <i>FEBS Letters</i> , 2020 , 594, 4357-4369	3.8	7
389	An NMR-based approach reveals the core structure of the functional domain of SINEUP lncRNAs. <i>Nucleic Acids Research</i> , 2020 , 48, 9346-9360	20.1	8
388	Functional annotation of human long noncoding RNAs via molecular phenotyping. <i>Genome Research</i> , 2020 , 30, 1060-1072	9.7	41
387	Comparative transcriptomics of primary cells in vertebrates. <i>Genome Research</i> , 2020 , 30, 951-961	9.7	12
386	SINEUP long non-coding RNA acts via PTBP1 and HNRNPK to promote translational initiation assemblies. <i>Nucleic Acids Research</i> , 2020 , 48, 11626-11644	20.1	8
385	Use of Cap Analysis Gene Expression to detect human papillomavirus promoter activity patterns at different disease stages. <i>Scientific Reports</i> , 2020 , 10, 17991	4.9	0
384	Safety and efficacy of the Russian COVID-19 vaccine: more information needed. <i>Lancet, The</i> , 2020 , 396, e53	40	20
383	SINEUP Non-coding RNA Targeting GDNF Rescues Motor Deficits and Neurodegeneration in a Mouse Model of Parkinson@ Disease. <i>Molecular Therapy</i> , 2020 , 28, 642-652	11.7	20
382	Cap Analysis of Gene Expression (CAGE): A Quantitative and Genome-Wide Assay of Transcription Start Sites. <i>Methods in Molecular Biology</i> , 2020 , 2120, 277-301	1.4	7
381	NET-CAGE characterizes the dynamics and topology of human transcribed cis-regulatory elements. <i>Nature Genetics</i> , 2019 , 51, 1369-1379	36.3	33
380	Broad Heterochromatic Domains Open in Gonocyte Development Prior to De Novo DNA Methylation. <i>Developmental Cell</i> , 2019 , 51, 21-34.e5	10.2	17
379	Identification of novel cerebellar developmental transcriptional regulators with motif activity analysis. <i>BMC Genomics</i> , 2019 , 20, 718	4.5	3
378	MicroRNA-27a/b-3p and PPARG regulate SCAMP3 through a feed-forward loop during adipogenesis. <i>Scientific Reports</i> , 2019 , 9, 13891	4.9	12

377	SINEUP non-coding RNAs rescue defective frataxin expression and activity in a cellular model of Friedreich@ Ataxia. <i>Nucleic Acids Research</i> , 2019 , 47, 10728-10743	20.1	18
376	The RNA-binding protein ILF3 binds to transposable element sequences in SINEUP lncRNAs. <i>FASEB Journal</i> , 2019 , 33, 13572-13589	0.9	14
375	C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution. <i>Nature Communications</i> , 2019 , 10, 360	17.4	45
374	refTSS: A Reference Data Set for Human and Mouse Transcription Start Sites. <i>Journal of Molecular Biology</i> , 2019 , 431, 2407-2422	6.5	20
373	Cell Based Assays of SINEUP Non-coding RNAs That Can Specifically Enhance mRNA Translation. Journal of Visualized Experiments, 2019 ,	1.6	4
372	Multi-year whole-blood transcriptome data for the study of onset and progression of Parkinson@ Disease. <i>Scientific Data</i> , 2019 , 6, 20	8.2	5
371	Dynamics of cardiomyocyte transcriptome and chromatin landscape demarcates key events of heart development. <i>Genome Research</i> , 2019 , 29, 506-519	9.7	14
370	Nuclear AGO1 Regulates Gene Expression by Affecting Chromatin Architecture in Human Cells. <i>Cell Systems</i> , 2019 , 9, 446-458.e6	10.6	10
369	Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24242-24251	1 ^{11.5}	90
368	Tagging Transcription Starting Sites with CAGE 2019 , 7-20		
368 367	Tagging Transcription Starting Sites with CAGE 2019, 7-20 Large expert-curated database for benchmarking document similarity detection in biomedical literature search. Database: the Journal of Biological Databases and Curation, 2019, 2019,	5	4
	Large expert-curated database for benchmarking document similarity detection in biomedical	5 9.8	4
367	Large expert-curated database for benchmarking document similarity detection in biomedical literature search. <i>Database: the Journal of Biological Databases and Curation</i> , 2019 , 2019,		
367 366	Large expert-curated database for benchmarking document similarity detection in biomedical literature search. <i>Database: the Journal of Biological Databases and Curation</i> , 2019 , 2019, Look for methods, not conclusions. <i>Cell Death and Disease</i> , 2019 , 10, 931 Update of the FANTOM web resource: expansion to provide additional transcriptome atlases.	9.8	
367 366 365	Large expert-curated database for benchmarking document similarity detection in biomedical literature search. <i>Database: the Journal of Biological Databases and Curation</i> , 2019 , 2019, Look for methods, not conclusions. <i>Cell Death and Disease</i> , 2019 , 10, 931 Update of the FANTOM web resource: expansion to provide additional transcriptome atlases. <i>Nucleic Acids Research</i> , 2019 , 47, D752-D758 Antisense Transcription in Loci Associated to Hereditary Neurodegenerative Diseases. <i>Molecular</i>	9.8	80
367 366 365 364	Large expert-curated database for benchmarking document similarity detection in biomedical literature search. <i>Database: the Journal of Biological Databases and Curation</i> , 2019 , 2019, Look for methods, not conclusions. <i>Cell Death and Disease</i> , 2019 , 10, 931 Update of the FANTOM web resource: expansion to provide additional transcriptome atlases. <i>Nucleic Acids Research</i> , 2019 , 47, D752-D758 Antisense Transcription in Loci Associated to Hereditary Neurodegenerative Diseases. <i>Molecular Neurobiology</i> , 2019 , 56, 5392-5415 The Human Cell Atlas: Technical approaches and challenges. <i>Briefings in Functional Genomics</i> , 2018 ,	9.8 20.1 6.2	80
367 366 365 364 363	Large expert-curated database for benchmarking document similarity detection in biomedical literature search. <i>Database: the Journal of Biological Databases and Curation</i> , 2019 , 2019, Look for methods, not conclusions. <i>Cell Death and Disease</i> , 2019 , 10, 931 Update of the FANTOM web resource: expansion to provide additional transcriptome atlases. <i>Nucleic Acids Research</i> , 2019 , 47, D752-D758 Antisense Transcription in Loci Associated to Hereditary Neurodegenerative Diseases. <i>Molecular Neurobiology</i> , 2019 , 56, 5392-5415 The Human Cell Atlas: Technical approaches and challenges. <i>Briefings in Functional Genomics</i> , 2018 , 17, 283-294 Prevention of hepatocellular carcinoma by targeting MYCN-positive liver cancer stem cells with acyclic retinoid. <i>Proceedings of the National Academy of Sciences of the United States of America</i> ,	9.8 20.1 6.2 4.9	80 15 22

359	Transcriptional landscape of Mycobacterium tuberculosis infection in macrophages. <i>Scientific Reports</i> , 2018 , 8, 6758	4.9	41
358	From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond. <i>Chemical Reviews</i> , 2018 , 118, 4365-4403	68.1	44
357	Target-enrichment sequencing for detailed characterization of small RNAs. <i>Nature Protocols</i> , 2018 , 13, 768-786	18.8	8
356	SCPortalen: human and mouse single-cell centric database. <i>Nucleic Acids Research</i> , 2018 , 46, D781-D787	20.1	25
355	Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease. <i>PLoS Computational Biology</i> , 2018 , 14, e1005934	5	8
354	Identification of functional features of synthetic SINEUPs, antisense lncRNAs that specifically enhance protein translation. <i>PLoS ONE</i> , 2018 , 13, e0183229	3.7	16
353	Conserved temporal ordering of promoter activation implicates common mechanisms governing the immediate early response across cell types and stimuli. <i>Open Biology</i> , 2018 , 8,	7	3
352	Integration of genetics and miRNA-target gene network identified disease biology implicated in tissue specificity. <i>Nucleic Acids Research</i> , 2018 , 46, 11898-11909	20.1	26
351	SLIC-CAGE: high-resolution transcription start site mapping using nanogram-levels of total RNA. <i>Genome Research</i> , 2018 , 28, 1943-1956	9.7	17
350	Amphioxus functional genomics and the origins of vertebrate gene regulation. <i>Nature</i> , 2018 , 564, 64-70	50.4	120
349	Promoter Usage and Dynamics in Vascular Smooth Muscle Cells Exposed to Fibroblast Growth Factor-2 or Interleukin-1\(\Pi\)Scientific Reports, 2018 , 8, 13164	4.9	6
348	DEIVA: a web application for interactive visual analysis of differential gene expression profiles. <i>BMC Genomics</i> , 2017 , 18, 47	4.5	33
347	DNA damage response inhibition at dysfunctional telomeres by modulation of telomeric DNA damage response RNAs. <i>Nature Communications</i> , 2017 , 8, 13980	17.4	53
346	An atlas of human long non-coding RNAs with accurate 5@ends. <i>Nature</i> , 2017 , 543, 199-204	50.4	581
345	The FANTOM5 Computation Ecosystem: Genomic Information Hub for Promoters and Active Enhancers. <i>Methods in Molecular Biology</i> , 2017 , 1611, 199-217	1.4	13
344	From bench to bedside: The long journey of long non-coding RNAs. <i>Current Opinion in Systems Biology</i> , 2017 , 3, 119-124	3.2	17
343	A damaged genome@transcriptional landscape through multilayered expression profiling around in situ-mapped DNA double-strand breaks. <i>Nature Communications</i> , 2017 , 8, 15656	17.4	53

341	Linking FANTOM5 CAGE peaks to annotations with CAGEscan. Scientific Data, 2017, 4, 170147	8.2	10
340	Transcriptome Analysis Uncovers a Growth-Promoting Activity of Orosomucoid-1 on Hepatocytes. <i>EBioMedicine</i> , 2017 , 24, 257-266	8.8	13
339	The FANTOM5 collection, a data series underpinning mammalian transcriptome atlases in diverse cell types. <i>Scientific Data</i> , 2017 , 4, 170113	8.2	35
338	Systematic analysis of transcription start sites in avian development. <i>PLoS Biology</i> , 2017 , 15, e2002887	9.7	22
337	Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease. <i>PLoS Genetics</i> , 2017 , 13, e1006641	6	64
336	An integrated expression atlas of miRNAs and their promoters in human and mouse. <i>Nature Biotechnology</i> , 2017 , 35, 872-878	44.5	282
335	FANTOM5 CAGE profiles of human and mouse samples. Scientific Data, 2017, 4, 170112	8.2	88
334	FANTOM5 CAGE profiles of human and mouse reprocessed for GRCh38 and GRCm38 genome assemblies. <i>Scientific Data</i> , 2017 , 4, 170107	8.2	29
333	Monitoring transcription initiation activities in rat and dog. <i>Scientific Data</i> , 2017 , 4, 170173	8.2	4
332	The effect of genetic variation on promoter usage and enhancer activity. <i>Nature Communications</i> , 2017 , 8, 1358	17.4	26
331	Integrative CAGE and DNA Methylation Profiling Identify Epigenetically Regulated Genes in NSCLC. <i>Molecular Cancer Research</i> , 2017 , 15, 1354-1365	6.6	20
330	Update of the FANTOM web resource: high resolution transcriptome of diverse cell types in mammals. <i>Nucleic Acids Research</i> , 2017 , 45, D737-D743	20.1	80
329	Transcriptional Dynamics During Human Adipogenesis and Its Link to Adipose Morphology and Distribution. <i>Diabetes</i> , 2017 , 66, 218-230	0.9	19
328	A Transcriptional Switch Point During Hematopoietic Stem and Progenitor Cell Ontogeny. <i>Stem Cells and Development</i> , 2017 , 26, 314-327	4.4	3
327	Transcription start site profiling of 15 anatomical regions of the Macaca mulatta central nervous system. <i>Scientific Data</i> , 2017 , 4, 170163	8.2	2
326	The Human Cell Atlas. <i>ELife</i> , 2017 , 6,	8.9	937
325	Author response: The Human Cell Atlas 2017,		10
324	Discovery and functional analysis of lncRNAs: Methodologies to investigate an uncharacterized transcriptome. <i>Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms</i> , 2016 , 1859, 3-15	6	138

323	Expression Specificity of Disease-Associated lncRNAs: Toward Personalized Medicine. <i>Current Topics in Microbiology and Immunology</i> , 2016 , 394, 237-58	3.3	27
322	YY1 binding association with sex-biased transcription revealed through X-linked transcript levels and allelic binding analyses. <i>Scientific Reports</i> , 2016 , 6, 37324	4.9	16
321	Characterization of piRNAs across postnatal development in mouse brain. <i>Scientific Reports</i> , 2016 , 6, 25039	4.9	25
320	Genome sequence and analysis of the Japanese morning glory Ipomoea nil. <i>Nature Communications</i> , 2016 , 7, 13295	17.4	91
319	Identification of antisense long noncoding RNAs that function as SINEUPs in human cells. <i>Scientific Reports</i> , 2016 , 6, 33605	4.9	42
318	FANTOM5 transcriptome catalog of cellular states based on Semantic MediaWiki. <i>Database: the Journal of Biological Databases and Curation</i> , 2016 , 2016,	5	44
317	Transcriptome Analysis of Recurrently Deregulated Genes across Multiple Cancers Identifies New Pan-Cancer Biomarkers. <i>Cancer Research</i> , 2016 , 76, 216-26	10.1	56
316	Functional annotation of the vlinc class of non-coding RNAs using systems biology approach. <i>Nucleic Acids Research</i> , 2016 , 44, 3233-52	20.1	21
315	The ORFeome Collaboration: a genome-scale human ORF-clone resource. <i>Nature Methods</i> , 2016 , 13, 191-2	21.6	80
314	Deficiency of multidrug resistance 2 contributes to cell transformation through oxidative stress. <i>Carcinogenesis</i> , 2016 , 37, 39-48	4.6	13
313	On-the-fly selection of cell-specific enhancers, genes, miRNAs and proteins across the human body using SlideBase. <i>Database: the Journal of Biological Databases and Curation</i> , 2016 , 2016,	5	12
312	Transcriptome analysis of periodontitis-associated fibroblasts by CAGE sequencing identified DLX5 and RUNX2 long variant as novel regulators involved in periodontitis. <i>Scientific Reports</i> , 2016 , 6, 33666	4.9	14
311	DeepCAGE transcriptomics identify HOXD10 as a transcription factor regulating lymphatic endothelial responses to VEGF-C. <i>Journal of Cell Science</i> , 2016 , 129, 2573-85	5.3	11
310	Transcriptional, post-transcriptional and chromatin-associated regulation of pri-miRNAs, pre-miRNAs and moRNAs. <i>Nucleic Acids Research</i> , 2016 , 44, 3070-81	20.1	25
309	Single-Nucleotide Resolution Mapping of Hepatitis B Virus Promoters in Infected Human Livers and Hepatocellular Carcinoma. <i>Journal of Virology</i> , 2016 , 90, 10811-10822	6.6	14
308	Isoforms of the Erythropoietin receptor in dopaminergic neurons of the Substantia Nigra. <i>Journal of Neurochemistry</i> , 2016 , 139, 596-609	6	8
307	Characterization of novel transcripts of human papillomavirus type 16 using cap analysis gene expression technology. <i>Journal of Virology</i> , 2015 , 89, 2448-52	6.6	5
306	Gateways to the FANTOM5 promoter level mammalian expression atlas. <i>Genome Biology</i> , 2015 , 16, 22	18.3	443

305	Krimper Enforces an Antisense Bias on piRNA Pools by Binding AGO3 in the Drosophila Germline. <i>Molecular Cell</i> , 2015 , 59, 553-63	17.6	47
304	The frequent evolutionary birth and death of functional promoters in mouse and human. <i>Genome Research</i> , 2015 , 25, 1546-57	9.7	33
303	Telomerase reverse transcriptase regulates microRNAs. <i>International Journal of Molecular Sciences</i> , 2015 , 16, 1192-208	6.3	15
302	A draft network of ligand-receptor-mediated multicellular signalling in human. <i>Nature Communications</i> , 2015 , 6, 7866	17.4	393
301	Transcriptional dynamics reveal critical roles for non-coding RNAs in the immediate-early response. <i>PLoS Computational Biology</i> , 2015 , 11, e1004217	5	15
300	CAGEr: precise TSS data retrieval and high-resolution promoterome mining for integrative analyses. <i>Nucleic Acids Research</i> , 2015 , 43, e51	20.1	117
299	Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells. Journal of Leukocyte Biology, 2015 , 97, 985-995	6.5	17
298	Redefining the transcriptional regulatory dynamics of classically and alternatively activated macrophages by deepCAGE transcriptomics. <i>Nucleic Acids Research</i> , 2015 , 43, 6969-82	20.1	38
297	STAP cells are derived from ES cells. <i>Nature</i> , 2015 , 525, E4-5	50.4	6
296	SINEUPs: A new class of natural and synthetic antisense long non-coding RNAs that activate translation. <i>RNA Biology</i> , 2015 , 12, 771-9	4.8	51
295	Complementing tissue characterization by integrating transcriptome profiling from the Human Protein Atlas and from the FANTOM5 consortium. <i>Nucleic Acids Research</i> , 2015 , 43, 6787-98	20.1	61
294	Complexity of Mammalian Transcriptome Analyzed by RNA Deep Sequencing 2015 , 3-22		O
293	CAGE profiling of ncRNAs in hepatocellular carcinoma reveals widespread activation of retroviral LTR promoters in virus-induced tumors. <i>Genome Research</i> , 2015 , 25, 1812-24	9.7	40
292	Paradigm shifts in genomics through the FANTOM projects. <i>Mammalian Genome</i> , 2015 , 26, 391-402	3.2	73
291	Promoter-level expression clustering identifies time development of transcriptional regulatory cascades initiated by ErbB receptors in breast cancer cells. <i>Scientific Reports</i> , 2015 , 5, 11999	4.9	24
290	Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation. <i>Molecular Systems Biology</i> , 2015 , 11, 852	12.2	229
289	DeepCAGE Transcriptomics Reveal an Important Role of the Transcription Factor MAFB in the Lymphatic Endothelium. <i>Cell Reports</i> , 2015 , 13, 1493-1504	10.6	25
288	Remodeling of retrotransposon elements during epigenetic induction of adult visual cortical plasticity[by HDAC inhibitors. <i>Epigenetics and Chromatin</i> , 2015 , 8, 55	5.8	27

(2014-2015)

287	Mapping Mammalian Cell-type-specific Transcriptional Regulatory Networks Using KD-CAGE and ChIP-seq Data in the TC-YIK Cell Line. <i>Frontiers in Genetics</i> , 2015 , 6, 331	4.5	11
286	Expression analysis of the long non-coding RNA antisense to Uchl1 (AS Uchl1) during dopaminergic cells@differentiation in vitro and in neurochemical models of Parkinson@ disease. <i>Frontiers in Cellular Neuroscience</i> , 2015 , 9, 114	6.1	99
285	SINEUPs are modular antisense long non-coding RNAs that increase synthesis of target proteins in cells. <i>Frontiers in Cellular Neuroscience</i> , 2015 , 9, 174	6.1	60
284	HSA21 Single-Minded 2 (Sim2) Binding Sites Co-Localize with Super-Enhancers and Pioneer Transcription Factors in Pluripotent Mouse ES Cells. <i>PLoS ONE</i> , 2015 , 10, e0126475	3.7	5
283	The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome. <i>PLoS Biology</i> , 2015 , 13, e1002315	9.7	17
282	Application of Gene Expression Trajectories Initiated from ErbB Receptor Activation Highlights the Dynamics of Divergent Promoter Usage. <i>PLoS ONE</i> , 2015 , 10, e0144176	3.7	1
281	Engineering mammalian cell factories with SINEUP noncoding RNAs to improve translation of secreted proteins. <i>Gene</i> , 2015 , 569, 287-93	3.8	31
280	Biased allelic expression in human primary fibroblast single cells. <i>American Journal of Human Genetics</i> , 2015 , 96, 70-80	11	88
279	Nuclear transcriptome profiling of induced pluripotent stem cells and embryonic stem cells identify non-coding loci resistant to reprogramming. <i>Cell Cycle</i> , 2015 , 14, 1148-55	4.7	11
278	Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. <i>Science</i> , 2015 , 347, 1010-4	33.3	384
277	A new approach for screening cervical cancer by characterization of transcripts using CAGE technology <i>Journal of Clinical Oncology</i> , 2015 , 33, e16514-e16514	2.2	
276	A promoter-level mammalian expression atlas. <i>Nature</i> , 2014 , 507, 462-70	50.4	1301
275	Diversity and dynamics of the Drosophila transcriptome. <i>Nature</i> , 2014 , 512, 393-9	50.4	418
274	Two independent transcription initiation codes overlap on vertebrate core promoters. <i>Nature</i> , 2014 , 507, 381-385	50.4	121
273	An atlas of active enhancers across human cell types and tissues. <i>Nature</i> , 2014 , 507, 455-461	50.4	1595
272	The enhancer and promoter landscape of human regulatory and conventional T-cell subpopulations. <i>Blood</i> , 2014 , 123, e68-78	2.2	58
271	Systemic identification of estrogen-regulated genes in breast cancer cells through cap analysis of gene expression mapping. <i>Biochemical and Biophysical Research Communications</i> , 2014 , 447, 531-6	3.4	10
270	Analysis of the DNA methylome and transcriptome in granulopoiesis reveals timed changes and dynamic enhancer methylation. <i>Blood</i> , 2014 , 123, e79-89	2.2	59

269	Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing. <i>Genome Research</i> , 2014 , 24, 708-17	9.7	66
268	Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. <i>Nature Genetics</i> , 2014 , 46, 558-66	36.3	203
267	Transcription and enhancer profiling in human monocyte subsets. <i>Blood</i> , 2014 , 123, e90-9	2.2	101
266	Genomics: mice in the ENCODE spotlight. <i>Nature</i> , 2014 , 515, 346-7	50.4	10
265	Specific mesothelial signature marks the heterogeneity of mesenchymal stem cells from high-grade serous ovarian cancer. <i>Stem Cells</i> , 2014 , 32, 2998-3011	5.8	14
264	Widespread genome transcription: new possibilities for RNA therapies. <i>Biochemical and Biophysical Research Communications</i> , 2014 , 452, 294-301	3.4	27
263	Comparative validation of the D. melanogaster modENCODE transcriptome annotation. <i>Genome Research</i> , 2014 , 24, 1209-23	9.7	95
262	The devil in the details of RNA-seq. <i>Nature Biotechnology</i> , 2014 , 32, 882-4	44.5	30
261	MOIRAI: a compact workflow system for CAGE analysis. <i>BMC Bioinformatics</i> , 2014 , 15, 144	3.6	49
260	Chromatin states reveal functional associations for globally defined transcription start sites in four human cell lines. <i>BMC Genomics</i> , 2014 , 15, 120	4.5	15
259	RECLU: a pipeline to discover reproducible transcriptional start sites and their alternative regulation using capped analysis of gene expression (CAGE). <i>BMC Genomics</i> , 2014 , 15, 269	4.5	37
258	CAGE-defined promoter regions of the genes implicated in Rett Syndrome. <i>BMC Genomics</i> , 2014 , 15, 1177	4.5	7
257	Redefinition of the human mast cell transcriptome by deep-CAGE sequencing. <i>Blood</i> , 2014 , 123, e58-67	2.2	126
256	NanoCAGE analysis of the mouse olfactory epithelium identifies the expression of vomeronasal receptors and of proximal LINE elements. <i>Frontiers in Cellular Neuroscience</i> , 2014 , 8, 41	6.1	11
255	Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 5289-94	11.5	85
254	Digital expression profiling of the compartmentalized translatome of Purkinje neurons. <i>Genome Research</i> , 2014 , 24, 1396-410	9.7	39
253	PAPD5-mediated 3@denylation and subsequent degradation of miR-21 is disrupted in proliferative disease. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 1146	6 7 -7 <u>5</u> 2	106
252	Mesencephalic dopaminergic neurons express a repertoire of olfactory receptors and respond to odorant-like molecules. <i>BMC Genomics</i> , 2014 , 15, 729	4.5	36

251	Multiplicity of 5@ap structures present on short RNAs. PLoS ONE, 2014, 9, e102895	3.7	22
250	Detecting expressed genes using CAGE. Methods in Molecular Biology, 2014 , 1164, 67-85	1.4	100
249	Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis. <i>Genome Research</i> , 2013 , 23, 1938-50	9.7	77
248	Comparison of RNA- or LNA-hybrid oligonucleotides in template-switching reactions for high-speed sequencing library preparation. <i>BMC Genomics</i> , 2013 , 14, 665	4.5	17
247	Population transcriptomics with single-cell resolution: a new field made possible by microfluidics: a technology for high throughput transcript counting and data-driven definition of cell types. <i>BioEssays</i> , 2013 , 35, 131-40	4.1	17
246	Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA. <i>Nature Structural and Molecular Biology</i> , 2013 , 20, 332-8	17.6	160
245	High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression. <i>Genome Research</i> , 2013 , 23, 169-80	9.7	133
244	Regional differences in gene expression and promoter usage in aged human brains. <i>Neurobiology of Aging</i> , 2013 , 34, 1825-36	5.6	24
243	Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. <i>Cell</i> , 2013 , 153, 101-11	56.2	291
242	Noncoding RNA: The Major Output of Gene Expression 2013 , 181-213		
242	Noncoding RNA: The Major Output of Gene Expression 2013, 181-213 Suppression of artifacts and barcode bias in high-throughput transcriptome analyses utilizing template switching. <i>Nucleic Acids Research</i> , 2013, 41, e44	20.1	46
	Suppression of artifacts and barcode bias in high-throughput transcriptome analyses utilizing	20.1	,
241	Suppression of artifacts and barcode bias in high-throughput transcriptome analyses utilizing template switching. <i>Nucleic Acids Research</i> , 2013 , 41, e44 Temporal dynamics and transcriptional control using single-cell gene expression analysis. <i>Genome</i>		,
241	Suppression of artifacts and barcode bias in high-throughput transcriptome analyses utilizing template switching. <i>Nucleic Acids Research</i> , 2013 , 41, e44 Temporal dynamics and transcriptional control using single-cell gene expression analysis. <i>Genome Biology</i> , 2013 , 14, R118 A comprehensive promoter landscape identifies a novel promoter for CD133 in restricted tissues,	18.3	34 9
241 240 239	Suppression of artifacts and barcode bias in high-throughput transcriptome analyses utilizing template switching. <i>Nucleic Acids Research</i> , 2013 , 41, e44 Temporal dynamics and transcriptional control using single-cell gene expression analysis. <i>Genome Biology</i> , 2013 , 14, R118 A comprehensive promoter landscape identifies a novel promoter for CD133 in restricted tissues, cancers, and stem cells. <i>Frontiers in Genetics</i> , 2013 , 4, 209 5@nd-centered expression profiling using cap-analysis gene expression and next-generation	18.3	34 9 182
241 240 239 238	Suppression of artifacts and barcode bias in high-throughput transcriptome analyses utilizing template switching. <i>Nucleic Acids Research</i> , 2013 , 41, e44 Temporal dynamics and transcriptional control using single-cell gene expression analysis. <i>Genome Biology</i> , 2013 , 14, R118 A comprehensive promoter landscape identifies a novel promoter for CD133 in restricted tissues, cancers, and stem cells. <i>Frontiers in Genetics</i> , 2013 , 4, 209 5Cend-centered expression profiling using cap-analysis gene expression and next-generation sequencing. <i>Nature Protocols</i> , 2012 , 7, 542-61	18.3 4.5 18.8	34 9 182
241 240 239 238 237	Suppression of artifacts and barcode bias in high-throughput transcriptome analyses utilizing template switching. <i>Nucleic Acids Research</i> , 2013 , 41, e44 Temporal dynamics and transcriptional control using single-cell gene expression analysis. <i>Genome Biology</i> , 2013 , 14, R118 A comprehensive promoter landscape identifies a novel promoter for CD133 in restricted tissues, cancers, and stem cells. <i>Frontiers in Genetics</i> , 2013 , 4, 209 5@nd-centered expression profiling using cap-analysis gene expression and next-generation sequencing. <i>Nature Protocols</i> , 2012 , 7, 542-61 An integrated encyclopedia of DNA elements in the human genome. <i>Nature</i> , 2012 , 489, 57-74 NMDA receptor regulation prevents regression of visual cortical function in the absence of Mecp2.	18.3 4.5 18.8	34 9 182 11449

233	Metazoan promoters: emerging characteristics and insights into transcriptional regulation. <i>Nature Reviews Genetics</i> , 2012 , 13, 233-45	30.1	347
232	CAGE (cap analysis of gene expression): a protocol for the detection of promoter and transcriptional networks. <i>Methods in Molecular Biology</i> , 2012 , 786, 181-200	1.4	61
231	DeepCAGE: Genome-Wide Mapping of Transcription Start Sites 2012 , 23-46		1
230	Definition of PromotomeIIranscriptome Architecture Using CAGEscan 2012 , 47-61		
229	Understanding transcriptional regulation by integrative analysis of transcription factor binding data. <i>Genome Research</i> , 2012 , 22, 1658-67	9.7	133
228	Landscape of transcription in human cells. <i>Nature</i> , 2012 , 489, 101-8	50.4	3544
227	Structure by sequencing: discovery of hidden messages in the noncoding RNA fraction. <i>Molecular Cell</i> , 2012 , 48, 153-5	17.6	3
226	Automated workflow for preparation of cDNA for cap analysis of gene expression on a single molecule sequencer. <i>PLoS ONE</i> , 2012 , 7, e30809	3.7	18
225	piRNAs Warrant Investigation in Rett Syndrome: An Omics Perspective. <i>Disease Markers</i> , 2012 , 33, 261-	235	19
224	Trehalose-enhanced isolation of neuronal sub-types from adult mouse brain. <i>BioTechniques</i> , 2012 , 52, 381-5	2.5	49
223	Site-specific DICER and DROSHA RNA products control the DNA-damage response. <i>Nature</i> , 2012 , 488, 231-5	50.4	380
222	Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, E944-53	11.5	212
221	Promoter architecture of mouse olfactory receptor genes. <i>Genome Research</i> , 2012 , 22, 486-97	9.7	46
220	piRNAs warrant investigation in Rett Syndrome: an omics perspective. <i>Disease Markers</i> , 2012 , 33, 261-7	53.2	11
219	Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. <i>Nature</i> , 2011 , 480, 391-5	50.4	180
218	A user@guide to the encyclopedia of DNA elements (ENCODE). PLoS Biology, 2011, 9, e1001046	9.7	1060
217	Somatic retrotransposition alters the genetic landscape of the human brain. <i>Nature</i> , 2011 , 479, 534-7	50.4	519
216	Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. <i>Nature</i> , 2011 , 476, 224-7	50.4	784

(2010-2011)

215	Profiling transcription initiation in human aged brain using deep-CAGE. <i>BMC Bioinformatics</i> , 2011 , 12,	3.6	2
214	Whole transcriptome analysis: what are we still missing?. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011 , 3, 527-43	6.6	21
213	Long non-coding RNA modifies chromatin: epigenetic silencing by long non-coding RNAs. <i>BioEssays</i> , 2011 , 33, 830-9	4.1	148
212	FXYD6, a Na,K-ATPase regulator, is expressed in type II taste cells. <i>Bioscience, Biotechnology and Biochemistry</i> , 2011 , 75, 1061-6	2.1	9
211	Unamplified cap analysis of gene expression on a single-molecule sequencer. <i>Genome Research</i> , 2011 , 21, 1150-9	9.7	143
210	NanoCAGE: a high-resolution technique to discover and interrogate cell transcriptomes. <i>Cold Spring Harbor Protocols</i> , 2011 , 2011, pdb.prot5559	1.2	51
209	Update of the FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation. <i>Nucleic Acids Research</i> , 2011 , 39, D856-60	20.1	45
208	The reality of pervasive transcription. <i>PLoS Biology</i> , 2011 , 9, e1000625; discussion e1001102	9.7	325
207	Genome-wide analysis of promoter architecture in Drosophila melanogaster. <i>Genome Research</i> , 2011 , 21, 182-92	9.7	178
206	The short non-coding transcriptome of the protozoan parasite Trypanosoma cruzi. <i>PLoS Neglected Tropical Diseases</i> , 2011 , 5, e1283	4.8	29
205	Nuclear pore complex protein mediated nuclear localization of dicer protein in human cells. <i>PLoS ONE</i> , 2011 , 6, e23385	3.7	37
204	Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. <i>Nature Methods</i> , 2010 , 7, 528-34	21.6	123
203	Reduction of non-insert sequence reads by dimer eliminator LNA oligonucleotide for small RNA deep sequencing. <i>BioTechniques</i> , 2010 , 49, 751-5	2.5	27
202	High sensitivity TSS prediction: estimates of locations where TSS cannot occur. <i>PLoS ONE</i> , 2010 , 5, e139	13 3 47	6
201	RNA Dust: Where are the Genes?. DNA Research, 2010, 17, 209-209	4.5	78
200	Building promoter aware transcriptional regulatory networks using siRNA perturbation and deepCAGE. <i>Nucleic Acids Research</i> , 2010 , 38, 8141-8	20.1	11
199	RNA dust: where are the genes?. DNA Research, 2010, 17, 51-9	4.5	55
198	The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance. <i>Genome Research</i> , 2010 , 20, 791-803	9.7	77

197	Cross-mapping and the identification of editing sites in mature microRNAs in high-throughput sequencing libraries. <i>Genome Research</i> , 2010 , 20, 257-64	9.7	105
196	Molecular mechanisms of pituitary organogenesis: In search of novel regulatory genes. <i>Molecular and Cellular Endocrinology</i> , 2010 , 323, 4-19	4.4	122
195	An atlas of combinatorial transcriptional regulation in mouse and man. Cell, 2010, 140, 744-52	56.2	555
194	An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man. <i>Cell</i> , 2010 , 141, 369	56.2	3
193	Beyond the FANTOM4 2010 , 11, O11		78
192	Core promoter structure and genomic context reflect histone 3 lysine 9 acetylation patterns. <i>BMC Genomics</i> , 2010 , 11, 257	4.5	24
191	High-throughput verification of transcriptional starting sites by Deep-RACE. <i>BioTechniques</i> , 2009 , 46, 130-2	2.5	30
190	Tunable fractionation of nucleic acids. <i>BioTechniques</i> , 2009 , 47, 1041-3	2.5	4
189	Whole genome transcriptome analysis. RNA Biology, 2009, 6, 107-12	4.8	42
188	Annotating non-coding transcription using functional genomics strategies. <i>Briefings in Functional Genomics & Proteomics</i> , 2009 , 8, 437-43		5
187	Tiny RNAs associated with transcription start sites in animals. <i>Nature Genetics</i> , 2009 , 41, 572-8	36.3	302
186	The regulated retrotransposon transcriptome of mammalian cells. <i>Nature Genetics</i> , 2009 , 41, 563-71	36.3	601
185	The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. <i>Nature Genetics</i> , 2009 , 41, 553-62	36.3	356
184	Is sequencing enlightenment ending the dark age of the transcriptome?. <i>Nature Methods</i> , 2009 , 6, 711-	1 3 1.6	24
183	Unexpected expression of alpha- and beta-globin in mesencephalic dopaminergic neurons and glial cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 15454-	9 ^{11.5}	193
182	Discovery of transcriptional regulators and signaling pathways in the developing pituitary gland by bioinformatic and genomic approaches. <i>Genomics</i> , 2009 , 93, 449-60	4.3	58
181	Altruistic functions for selfish DNA. <i>Cell Cycle</i> , 2009 , 8, 2895-900	4.7	55
180	Small RNAs derived from snoRNAs. <i>Rna</i> , 2009 , 15, 1233-40	5.8	325

(2008-2009)

179	Genetics, gene expression and bioinformatics of the pituitary gland. <i>Hormone Research in Paediatrics</i> , 2009 , 71 Suppl 2, 101-15	3.3	9
178	Generation of full-length cDNA libraries: focus on plants. <i>Methods in Molecular Biology</i> , 2009 , 533, 49-68	81.4	1
177	Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data. <i>Genome Biology</i> , 2009 , 10, R79	18.3	105
176	FANTOM4 EdgeExpressDB: an integrated database of promoters, genes, microRNAs, expression dynamics and regulatory interactions. <i>Genome Biology</i> , 2009 , 10, R39	18.3	56
175	The FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation. <i>Genome Biology</i> , 2009 , 10, R40	18.3	65
174	Tagging Transcription Starting Sites with CAGE 2009 , 7-20		1
173	Construction of CAGE Libraries 2009 , 21-39		
172	Genome-wide detection and analysis of hippocampus core promoters using DeepCAGE. <i>Genome Research</i> , 2009 , 19, 255-65	9.7	116
171	Non-coding RNA transcription: turning on neighbours. <i>Nature Cell Biology</i> , 2008 , 10, 1023-4	23.4	29
170	Rapidly evolving human promoter regions. <i>Nature Genetics</i> , 2008 , 40, 1262-3; author reply 1263-4	36.3	15
169	Hidden layers of human small RNAs. <i>BMC Genomics</i> , 2008 , 9, 157		226
		4.5	226
168	Multifaceted mammalian transcriptome. <i>Current Opinion in Cell Biology</i> , 2008 , 20, 274-80	4·5 9	68
168 167			
	Multifaceted mammalian transcriptome. <i>Current Opinion in Cell Biology</i> , 2008 , 20, 274-80 A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity	9	68
167	Multifaceted mammalian transcriptome. <i>Current Opinion in Cell Biology</i> , 2008 , 20, 274-80 A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE. <i>Genomics</i> , 2008 , 91, 281-8 Placental expression profiling in preeclampsia: local overproduction of hemoglobin may drive	9	68 82
167 166	Multifaceted mammalian transcriptome. <i>Current Opinion in Cell Biology</i> , 2008 , 20, 274-80 A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE. <i>Genomics</i> , 2008 , 91, 281-8 Placental expression profiling in preeclampsia: local overproduction of hemoglobin may drive pathological changes. <i>Fertility and Sterility</i> , 2008 , 90, 1834-43 G alpha14 is a candidate mediator of sweet/umami signal transduction in the posterior region of	9 4-3 4.8	68 82 67
167 166 165	Multifaceted mammalian transcriptome. <i>Current Opinion in Cell Biology</i> , 2008 , 20, 274-80 A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE. <i>Genomics</i> , 2008 , 91, 281-8 Placental expression profiling in preeclampsia: local overproduction of hemoglobin may drive pathological changes. <i>Fertility and Sterility</i> , 2008 , 90, 1834-43 G alpha14 is a candidate mediator of sweet/umami signal transduction in the posterior region of the mouse tongue. <i>Biochemical and Biophysical Research Communications</i> , 2008 , 376, 504-8 Genome-wide analysis of cancer/testis gene expression. <i>Proceedings of the National Academy of</i>	9 4-3 4-8 3-4	68 82 67 38

161	A code for transcription initiation in mammalian genomes. <i>Genome Research</i> , 2008 , 18, 1-12	9.7	179
160	Gene organization in rice revealed by full-length cDNA mapping and gene expression analysis through microarray. <i>PLoS ONE</i> , 2007 , 2, e1235	3.7	50
159	Mammalian RNA polymerase II core promoters: insights from genome-wide studies. <i>Nature Reviews Genetics</i> , 2007 , 8, 424-36	30.1	394
158	Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. <i>Nature</i> , 2007 , 447, 799-816	50.4	4121
157	Informatic and genomic analysis of melanocyte cDNA libraries as a resource for the study of melanocyte development and function. <i>Pigment Cell & Melanoma Research</i> , 2007 , 20, 201-9		3
156	Large-scale clustering of CAGE tag expression data. <i>BMC Bioinformatics</i> , 2007 , 8, 161	3.6	6
155	Transcriptomics resources for functional genomics. <i>Briefings in Functional Genomics & Proteomics</i> , 2007 , 6, 171-9		
154	Constructing the landscape of the mammalian transcriptome. <i>Journal of Experimental Biology</i> , 2007 , 210, 1497-506	3	38
153	Genomic organization of transcriptomes in mammals: Coregulation and cofunctionality. <i>Genomics</i> , 2007 , 89, 580-7	4.3	50
152	Noncoding RNA transcription beyond annotated genes. <i>Current Opinion in Genetics and Development</i> , 2007 , 17, 139-44	4.9	112
151	Diversity of Ca2+-activated K+ channel transcripts in inner ear hair cells. <i>Gene</i> , 2007 , 386, 11-23	3.8	25
150	Splicing bypasses 3@nd formation signals to allow complex gene architectures. <i>Gene</i> , 2007 , 403, 188-93	3 3.8	6
149	Simplified ontologies allowing comparison of developmental mammalian gene expression. <i>Genome Biology</i> , 2007 , 8, R229	18.3	12
148	CAGE-TSSchip: promoter-based expression profiling using the 5Geading label of capped transcripts 2007 , 8, R42		3
147	Tagging mammalian transcription complexity. <i>Trends in Genetics</i> , 2006 , 22, 501-10	8.5	81
147 146		8.5 3.6	81
	Tagging mammalian transcription complexity. <i>Trends in Genetics</i> , 2006 , 22, 501-10 Computational promoter analysis of mouse, rat and human antimicrobial peptide-coding genes.		

143	Mice and men: their promoter properties. <i>PLoS Genetics</i> , 2006 , 2, e54	6	75
142	Clusters of internally primed transcripts reveal novel long noncoding RNAs. <i>PLoS Genetics</i> , 2006 , 2, e37	6	135
141	Pseudo-messenger RNA: phantoms of the transcriptome. <i>PLoS Genetics</i> , 2006 , 2, e23	6	51
140	The abundance of short proteins in the mammalian proteome. <i>PLoS Genetics</i> , 2006 , 2, e52	6	159
139	Complex Loci in human and mouse genomes. <i>PLoS Genetics</i> , 2006 , 2, e47	6	246
138	Heterotachy in mammalian promoter evolution. <i>PLoS Genetics</i> , 2006 , 2, e30	6	90
137	A method for similarity search of genomic positional expression using CAGE. <i>PLoS Genetics</i> , 2006 , 2, e44	1 6	3
136	Differential use of signal peptides and membrane domains is a common occurrence in the protein output of transcriptional units. <i>PLoS Genetics</i> , 2006 , 2, e46	6	25
135	A simple physical model predicts small exon length variations. <i>PLoS Genetics</i> , 2006 , 2, e45	6	58
134	Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs. <i>PLoS Genetics</i> , 2006 , 2, e62	6	138
133	Discrimination of non-protein-coding transcripts from protein-coding mRNA. RNA Biology, 2006, 3, 40-8	4.8	90
132	A molecular neuroethological approach for identifying and characterizing a cascade of behaviorally regulated genes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 15212-7	11.5	156
131	Dynamic usage of transcription start sites within core promoters. <i>Genome Biology</i> , 2006 , 7, R118	18.3	64
130	Transcriptional and structural impact of TATA-initiation site spacing in mammalian core promoters. <i>Genome Biology</i> , 2006 , 7, R78	18.3	85
129	Alternate transcription of the Toll-like receptor signaling cascade. <i>Genome Biology</i> , 2006 , 7, R10	18.3	63
128	Genome-wide review of transcriptional complexity in mouse protein kinases and phosphatases. <i>Genome Biology</i> , 2006 , 7, R5	18.3	41
127	CAGE Basic/Analysis Databases: the CAGE resource for comprehensive promoter analysis. <i>Nucleic Acids Research</i> , 2006 , 34, D632-6	20.1	69
126	Transcriptional network dynamics in macrophage activation. <i>Genomics</i> , 2006 , 88, 133-42	4.3	104

125	Constructing ORFeome resources with removable termination codons. <i>BioTechniques</i> , 2006 , 41, 44, 46, 48 passim	2.5	21
124	Subcellular localization of mammalian type II membrane proteins. <i>Traffic</i> , 2006 , 7, 613-25	5.7	17
123	Genome-wide analysis of mammalian promoter architecture and evolution. <i>Nature Genetics</i> , 2006 , 38, 626-35	36.3	1021
122	CAGE: cap analysis of gene expression. <i>Nature Methods</i> , 2006 , 3, 211-22	21.6	328
121	Insights into social insects from the genome of the honeybee Apis mellifera. <i>Nature</i> , 2006 , 443, 931-49	50.4	1414
120	The complexity of the mammalian transcriptome. <i>Journal of Physiology</i> , 2006 , 575, 321-32	3.9	77
119	The transcriptional landscape of the mammalian genome. <i>Science</i> , 2005 , 309, 1559-63	33.3	2807
118	Protein-protein interactions of the hyperthermophilic archaeon Pyrococcus horikoshii OT3. <i>Genome Biology</i> , 2005 , 6, R98	18.3	11
117	Full-length cDNAs from chicken bursal lymphocytes to facilitate gene function analysis. <i>Genome Biology</i> , 2005 , 6, R6	18.3	86
116	Antisense transcription in the mammalian transcriptome. <i>Science</i> , 2005 , 309, 1564-6	33.3	1354
115	Tag-based approaches for transcriptome research and genome annotation. <i>Nature Methods</i> , 2005 , 2, 495-502	21.6	148
114	Differential expression of genes within the cochlea as defined by a custom mouse inner ear microarray. <i>JARO - Journal of the Association for Research in Otolaryngology</i> , 2005 , 6, 75-89	3.3	34
113	Cytoskeletal rearrangements in synovial fibroblasts as a novel pathophysiological determinant of modeled rheumatoid arthritis. <i>PLoS Genetics</i> , 2005 , 1, e48	6	45
112	Computational analysis suggests that alternative first exons are involved in tissue-specific transcription in rice (Oryza sativa). <i>Bioinformatics</i> , 2005 , 21, 1758-63	7.2	24
111	Transcriptome analysis of the aphid bacteriocyte, the symbiotic host cell that harbors an endocellular mutualistic bacterium, Buchnera. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 5477-82	11.5	168
110	Transcriptional profiling of genes responsive to abscisic acid and gibberellin in rice: phenotyping and comparative analysis between rice and Arabidopsis. <i>Physiological Genomics</i> , 2004 , 17, 87-100	3.6	70
109	Solution structure of the SEA domain from the murine homologue of ovarian cancer antigen CA125 (MUC16). <i>Journal of Biological Chemistry</i> , 2004 , 279, 13174-82	5.4	62
108	Gene discovery in genetically labeled single dopaminergic neurons of the retina. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 5069-74	11.5	64

(2003-2004)

107	Comparative analysis of plant and animal calcium signal transduction element using plant full-length cDNA data. <i>Molecular Biology and Evolution</i> , 2004 , 21, 1855-70	8.3	58
106	FREP: a database of functional repeats in mouse cDNAs. <i>Nucleic Acids Research</i> , 2004 , 32, D471-5	20.1	3
105	The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). <i>Genome Research</i> , 2004 , 14, 2121-7	9.7	404
104	Integrative annotation of 21,037 human genes validated by full-length cDNA clones. <i>PLoS Biology</i> , 2004 , 2, e162	9.7	255
103	CTAB-urea method purifies RNA from melanin for cDNA microarray analysis. <i>Pigment Cell & Melanoma Research</i> , 2004 , 17, 312-5		22
102	Libraries enriched for alternatively spliced exons reveal splicing patterns in melanocytes and melanomas. <i>Nature Methods</i> , 2004 , 1, 233-9	21.6	43
101	Solution structure of the RWD domain of the mouse GCN2 protein. <i>Protein Science</i> , 2004 , 13, 2089-100	6.3	56
100	Identification of unique transcripts from a mouse full-length, subtracted inner ear cDNA library. <i>Genomics</i> , 2004 , 83, 1012-23	4.3	21
99	Absolute expression values for mouse transcripts: re-annotation of the READ expression database by the use of CAGE and EST sequence tags. <i>FEBS Letters</i> , 2004 , 559, 22-6	3.8	17
98	Solution structure of a BolA-like protein from Mus musculus. <i>Protein Science</i> , 2004 , 13, 545-8	6.3	41
97	Construction of a full-length cDNA library from young spikelets of hexaploid wheat and its characterization by large-scale sequencing of expressed sequence tags. <i>Genes and Genetic Systems</i> , 2004 , 79, 227-32	1.4	44
96	Large-scale collection and characterization of promoters of human and mouse genes. <i>In Silico Biology</i> , 2004 , 4, 429-44	2	13
95	Identification of putative noncoding RNAs among the RIKEN mouse full-length cDNA collection. <i>Genome Research</i> , 2003 , 13, 1301-6	9.7	119
94	The mouse secretome: functional classification of the proteins secreted into the extracellular environment. <i>Genome Research</i> , 2003 , 13, 1350-9	9.7	65
93	Exploration of the cell-cycle genes found within the RIKEN FANTOM2 data set. <i>Genome Research</i> , 2003 , 13, 1366-75	9.7	12
92	Subtraction of cap-trapped full-length cDNA libraries to select rare transcripts. <i>BioTechniques</i> , 2003 , 35, 510-6, 518	2.5	11
91	Genetic control of the innate immune response. <i>BMC Immunology</i> , 2003 , 4, 5	3.7	109
90	Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. <i>DNA Research</i> , 2003 , 10, 239-47	4.5	684

89	Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 15776-81	11.5	554
88	Empirical analysis of transcriptional activity in the Arabidopsis genome. <i>Science</i> , 2003 , 302, 842-6	33.3	782
87	Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 8007-12	11.5	301
86	A novel feature of microsatellites in plants: a distribution gradient along the direction of transcription. <i>FEBS Letters</i> , 2003 , 554, 17-22	3.8	79
85	Multiple tissue-specific promoters control expression of the murine tartrate-resistant acid phosphatase gene. <i>Gene</i> , 2003 , 307, 111-23	3.8	51
84	Antisense transcripts with rice full-length cDNAs. <i>Genome Biology</i> , 2003 , 5, R5	18.3	96
83	Targeting a complex transcriptome: the construction of the mouse full-length cDNA encyclopedia. <i>Genome Research</i> , 2003 , 13, 1273-89	9.7	141
82	Impact of alternative initiation, splicing, and termination on the diversity of the mRNA transcripts encoded by the mouse transcriptome. <i>Genome Research</i> , 2003 , 13, 1290-300	9.7	148
81	A comprehensive transcript map of the mouse Gnas imprinted complex. <i>Genome Research</i> , 2003 , 13, 1410-5	9.7	49
80	Comparative analysis of apoptosis and inflammation genes of mice and humans. <i>Genome Research</i> , 2003 , 13, 1376-88	9.7	88
79	Cytokine-related genes identified from the RIKEN full-length mouse cDNA data set. <i>Genome Research</i> , 2003 , 13, 1307-17	9.7	2
78	Identification and analysis of chromodomain-containing proteins encoded in the mouse transcriptome. <i>Genome Research</i> , 2003 , 13, 1416-29	9.7	39
77	Systematic expression profiling of the mouse transcriptome using RIKEN cDNA microarrays. <i>Genome Research</i> , 2003 , 13, 1318-23	9.7	62
76	Mouse proteome analysis. <i>Genome Research</i> , 2003 , 13, 1335-44	9.7	75
75	Discovery of imprinted transcripts in the mouse transcriptome using large-scale expression profiling. <i>Genome Research</i> , 2003 , 13, 1402-9	9.7	87
74	Systematic characterization of the zinc-finger-containing proteins in the mouse transcriptome. <i>Genome Research</i> , 2003 , 13, 1430-42	9.7	79
73	Comprehensive analysis of the mouse metabolome based on the transcriptome. <i>Genome Research</i> , 2003 , 13, 1345-9	9.7	23
72	Human disease genes and their cloned mouse orthologs: exploration of the FANTOM2 cDNA sequence data set. <i>Genome Research</i> , 2003 , 13, 1496-500	9.7	6

(2002-2003)

71	Genomics approach to abscisic acid- and gibberellin-responsive genes in rice. <i>DNA Research</i> , 2003 , 10, 249-61	4.5	52
70	Analysis of the mouse transcriptome for genes involved in the function of the nervous system. <i>Genome Research</i> , 2003 , 13, 1395-401	9.7	26
69	Kinesin superfamily proteins (KIFs) in the mouse transcriptome. <i>Genome Research</i> , 2003 , 13, 1455-65	9.7	41
68	G protein-coupled receptor genes in the FANTOM2 database. <i>Genome Research</i> , 2003 , 13, 1466-77	9.7	28
67	Continued discovery of transcriptional units expressed in cells of the mouse mononuclear phagocyte lineage. <i>Genome Research</i> , 2003 , 13, 1360-5	9.7	38
66	Phosphoregulators: protein kinases and protein phosphatases of mouse. <i>Genome Research</i> , 2003 , 13, 1443-54	9.7	39
65	Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. <i>Science</i> , 2003 , 301, 376-9	33.3	772
64	Antisense transcripts with FANTOM2 clone set and their implications for gene regulation. <i>Genome Research</i> , 2003 , 13, 1324-34	9.7	192
63	Extra-long first-strand cDNA synthesis. <i>BioTechniques</i> , 2002 , 32, 984-5	2.5	27
62	Cytoplasmic RNA extraction from fresh and frozen mammalian tissues. <i>BioTechniques</i> , 2002 , 33, 306-9	2.5	11
61	A framework for integrating the songbird brain. <i>Journal of Comparative Physiology A:</i> Neuroethology, Sensory, Neural, and Behavioral Physiology, 2002 , 188, 961-80	2.3	24
60	Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. <i>Functional and Integrative Genomics</i> , 2002 , 2, 282-91	3.8	353
59	Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. <i>Plant Journal</i> , 2002 , 31, 279-92	6.9	1501
58	Initial sequencing and comparative analysis of the mouse genome. <i>Nature</i> , 2002 , 420, 520-62	50.4	5376
57	Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. <i>Nature</i> , 2002 , 420, 563-73	50.4	1350
56	Mapping of 19032 mouse cDNAs on mouse chromosomes. <i>Journal of Structural and Functional Genomics</i> , 2002 , 2, 23-8		2
55	A computer-based method of selecting clones for a full-length cDNA project: simultaneous collection of negligibly redundant and variant cDNAs. <i>Genome Research</i> , 2002 , 12, 1127-34	9.7	23
54	The DT40 web site: sampling and connecting the genes of a B cell line. <i>Nucleic Acids Research</i> , 2002 , 30, 230-1	20.1	24

53	The Drosophila gene collection: identification of putative full-length cDNAs for 70% of D. melanogaster genes. <i>Genome Research</i> , 2002 , 12, 1294-300	9.7	167
52	Inferring alternative splicing patterns in mouse from a full-length cDNA library and microarray data. <i>Genome Research</i> , 2002 , 12, 1286-93	9.7	16
51	Functional annotation of a full-length Arabidopsis cDNA collection. <i>Science</i> , 2002 , 296, 141-5	33.3	588
50	Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 16899-903	11.5	1457
49	On biased distribution of introns in various eukaryotes. <i>Gene</i> , 2002 , 300, 89-95	3.8	53
48	Comprehensive sequence analysis of translation termination sites in various eukaryotes. <i>Gene</i> , 2002 , 300, 79-87	3.8	15
47	Meeting Report: 14th International Mouse Genome Conference. <i>Mammalian Genome</i> , 2001 , 12, 401-40)5 3.2	
46	Arabidopsis encyclopedia using full-length cDNAs and its application. <i>Plant Physiology and Biochemistry</i> , 2001 , 39, 211-220	5.4	30
45	Delineating developmental and metabolic pathways in vivo by expression profiling using the RIKEN set of 18,816 full-length enriched mouse cDNA arrays. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 2199-204	11.5	182
44	Monitoring the Expression Pattern of 1300 Arabidopsis Genes under Drought and Cold Stresses by Using a Full-Length cDNA Microarray. <i>Plant Cell</i> , 2001 , 13, 61	11.6	12
43	Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. <i>Plant Cell</i> , 2001 , 13, 61-72	11.6	910
42	Functional annotation of a full-length mouse cDNA collection. <i>Nature</i> , 2001 , 409, 685-90	50.4	560
41	Balanced-size and long-size cloning of full-length, cap-trapped cDNAs into vectors of the novel lambda-FLC family allows enhanced gene discovery rate and functional analysis. <i>Genomics</i> , 2001 , 77, 79-90	4.3	70
40	Comparative evaluation of 5@nd-sequence quality of clones in CAP trapper and other full-length-cDNA libraries. <i>Gene</i> , 2001 , 263, 93-102	3.8	36
39	Correlation between sequence conservation of the 5Quntranslated region and codon usage bias in Mus musculus genes. <i>Gene</i> , 2001 , 276, 101-5	3.8	23
38	Removal of polyA tails from full-length cDNA libraries for high-efficiency sequencing. <i>BioTechniques</i> , 2001 , 31, 1042, 1044, 1048-9	2.5	13
37	Cloning full-length, cap-trapper-selected cDNAs by using the single-strand linker ligation method. <i>BioTechniques</i> , 2001 , 30, 1250-4	2.5	47
36	Computer-Based Methods for the Mouse Full-Length cDNA Encyclopedia: Real-Time Sequence Clustering for Construction of a Nonredundant cDNA Library. <i>Genome Research</i> , 2001 , 11, 281-289	9.7	4

35	Computer-based methods for the mouse full-length cDNA encyclopedia: real-time sequence clustering for construction of a nonredundant cDNA library. <i>Genome Research</i> , 2001 , 11, 281-9	9.7	25	
34	RIKEN integrated sequence analysis (RISA) system384-format sequencing pipeline with 384 multicapillary sequencer. <i>Genome Research</i> , 2000 , 10, 1757-71	9.7	48	
33	Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes. <i>Genome Research</i> , 2000 , 10, 1617-30	9.7	221	
32	Increased specificity of reverse transcription priming by trehalose and oligo-blockers allows high-efficiency window separation of mRNA display. <i>Nucleic Acids Research</i> , 1999 , 27, 1345-9	20.1	28	
31	High-efficiency full-length cDNA cloning. <i>Methods in Enzymology</i> , 1999 , 303, 19-44	1.7	147	
30	Automated Filtration-Based High-Throughput Plasmid Preparation System. <i>Genome Research</i> , 1999 , 9, 463-470	9.7	20	
29	High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper. <i>Plant Journal</i> , 1998 , 15, 707-20	6.9	189	
28	Characterization of gene expression in mouse blastocyst using single-pass sequencing of 3995 clones. <i>Genomics</i> , 1998 , 49, 167-79	4.3	39	
27	Thermostabilization and thermoactivation of thermolabile enzymes by trehalose and its application for the synthesis of full length cDNA. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 520-4	11.5	205	
26	Transcriptional sequencing: A method for DNA sequencing using RNA polymerase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 3455-60	11.5	36	
25	High efficiency selection of full-length cDNA by improved biotinylated cap trapper. <i>DNA Research</i> , 1997 , 4, 61-6	4.5	79	
24	Simple and rapid preparation of plasmid template by a filtration method using microtiter filter plates. <i>Nucleic Acids Research</i> , 1997 , 25, 1315-6	20.1	25	
23	A novel control system for polymerase chain reaction using a RIKEN GS384 thermalcycler. <i>DNA Research</i> , 1997 , 4, 387-91	4.5	5	
22	High-efficiency full-length cDNA cloning by biotinylated CAP trapper. <i>Genomics</i> , 1996 , 37, 327-36	4.3	266	
21	A discontinuous buffer system increasing resolution and reproducibility in DNA sequencing on high voltage horizontal ultrathin-layer electrophoresis. <i>Electrophoresis</i> , 1995 , 16, 1836-45	3.6	11	
20	A simple discontinuous buffer system for increased resolution and speed in gel electrophoretic analysis of DNA sequence. <i>Nucleic Acids Research</i> , 1990 , 18, 204	20.1	14	
19	From CAGE to DeepCAGE: High-Throughput Transcription Start Site and Promoter Identification for Gene Network Analysis55-75			
18	Wavelet profiles: their application in Oryza sativa DNA sequence analysis		2	

17	Predicting cell-type-specific non-coding RNA transcription from genome sequence	1
16	Single-cell transcriptomics, scRNA-Seq and C1 CAGE discovered distinct phases of pluripotency during naDe-to-primed conversion in mice	1
15	Comprehensive characterisation of molecular host-pathogen interactions in influenza A virus-infected human macrophages	1
14	The piRNA pathway sustains adult neurogenesis by reducing protein synthesis and cellular senescence	4
13	Single-cell transcriptomes of fluorescent, ubiquitination-based cell cycle indicator cells	4
12	Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease	2
11	Antisense ncRNAs during early vertebrate development are divided in groups with distinct features	2
10	Low Quantity single strand CAGE (LQ-ssCAGE) maps regulatory enhancers and promoters	1
9	C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution	1
8	AGO1 in association with NEAT1 lncRNA contributes to nuclear and 3D chromatin architecture in human cells	2
7	Decoding neuronal diversity by single-cell Convert-seq	1
6	Evidence of transcription at polyT short tandem repeats	1
5	SINEUP long non-coding RNA acts via PTBP1 and HNRNPK to promote translational initiation assemblies	2
4	RADICL-seq identifies general and cell type-specific principles of genome-wide RNA-chromatin interactions	8
3	Functional Annotation of Human Long Non-Coding RNAs via Molecular Phenotyping	6
2	Functional annotation of human long noncoding RNAs using chromatin conformation data	1
1	Systematic assessment of long-read RNA-seq methods for transcript identification and quantification	4