## O V Kononenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1054186/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Influence of numerous Moiré superlattices on transport properties of twisted multilayer graphene.<br>Carbon, 2022, 194, 52-61.                                                                        | 5.4 | 6         |
| 2  | Engineering of Numerous Moir ${ m \tilde{A}}$ © Superlattices in Twisted Multilayer Graphene for Twistronics and Straintronics Applications. ACS Nano, 2021, 15, 12358-12366.                         | 7.3 | 31        |
| 3  | Large-scalable graphene oxide films with resistive switching for non-volatile memory applications.<br>Journal of Alloys and Compounds, 2020, 849, 156699.                                             | 2.8 | 31        |
| 4  | Photoresponse in Multilayer Graphene during the Passage of a Surface Acoustic Wave. Technical Physics Letters, 2020, 46, 220-223.                                                                     | 0.2 | 2         |
| 5  | Electron transport and magnetotransport in graphene films grown on iron thin film catalyst.<br>Journal of Materials Science: Materials in Electronics, 2019, 30, 16353-16358.                         | 1.1 | Ο         |
| 6  | Technological Features of Graphene-based RF NEMS Capacitive Switches on a Semi-insulating Substrate. , 2019, , .                                                                                      |     | 2         |
| 7  | Low temperature synthesis of graphene nanocomposites using surface passivation of porous silicon nanocrystallites with carbon atoms. Diamond and Related Materials, 2019, 92, 53-60.                  | 1.8 | 5         |
| 8  | Composition-gradient protective coatings for solid oxide fuel cell interconnectors. Materials<br>Letters, 2019, 240, 201-204.                                                                         | 1.3 | 8         |
| 9  | Large positive magnetoresistance of graphene at room temperature in magnetic fields up to 0.5 T.<br>Scripta Materialia, 2018, 147, 37-39.                                                             | 2.6 | 7         |
| 10 | One-Step Synthesis of a Hybrid of Graphene Films and Ribbons. Inorganic Materials, 2018, 54, 229-232.                                                                                                 | 0.2 | 2         |
| 11 | Graphene synthesis by cold implantation of carbon recoil atoms. Technical Physics Letters, 2017, 43, 567-569.                                                                                         | 0.2 | 2         |
| 12 | Two-probe atomic-force microscope manipulator and its applications. Review of Scientific Instruments, 2017, 88, 063701.                                                                               | 0.6 | 7         |
| 13 | Comparative study of thermal and plasma enhanced atomic layer deposition of aluminum oxide on graphene. Journal of Physics: Conference Series, 2017, 917, 032039.                                     | 0.3 | 0         |
| 14 | Direct growth of graphene film on piezoelectric<br>La <sub>3</sub> Ga <sub>5.5</sub> Ta <sub>0.5</sub> O <sub>14</sub> crystal. Physica Status Solidi - Rapid<br>Research Letters, 2016, 10, 639-644. | 1.2 | 8         |
| 15 | Hall effect sensors on the basis of carbon material. Materials Letters, 2015, 158, 384-387.                                                                                                           | 1.3 | 9         |
| 16 | Surface acoustic wave amplification by direct current-voltage supplied to graphene film. Applied Physics Letters, 2015, 106, .                                                                        | 1.5 | 44        |
| 17 | Surface acoustic wave propagation in graphene film. Journal of Applied Physics, 2015, 118,                                                                                                            | 1.1 | 26        |
| 18 | Structure of graphene nanotube hybrid materials produced via single-stage CVD. Bulletin of the<br>Russian Academy of Sciences: Physics, 2014, 78, 854-858.                                            | 0.1 | 1         |

O V KONONENKO

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Using a nanoscale extraordinary hall effect sensor to measure the tip field of a magnetic cantilever.<br>Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 826-828.          | 0.1 | 0         |
| 20 | Resistive switching in graphene/graphene oxide/ZnO heterostructures. Journal of the Korean Physical Society, 2014, 64, 1399-1402.                                                          | 0.3 | 16        |
| 21 | Synthesis and properties of antimony-doped ZnO nanorods. Inorganic Materials, 2013, 49, 127-135.                                                                                           | 0.2 | 5         |
| 22 | LOW-PRESSURE NO-FLOW CVD SYNTHESIS OF GRAPHENE FILMS. , 2013, , .                                                                                                                          |     | 0         |
| 23 | Vapor-phase synthesis of aligned zinc oxide nanorod arrays on various substrates. Inorganic<br>Materials, 2011, 47, 740-745.                                                               | 0.2 | 5         |
| 24 | Selective growth of single-wall carbon nanotubes and the fabrication of devices on their basis.<br>Bulletin of the Russian Academy of Sciences: Physics, 2010, 74, 991-993.                | 0.1 | 3         |
| 25 | Electrical Properties of Pd-contacted Single-walled Carbon Nanotubes: A Scanning Probe Microscopy<br>Study. Materials Research Society Symposia Proceedings, 2010, 1258, 1.                | 0.1 | Ο         |
| 26 | Elemental vapor-phase synthesis of nanostructured zinc oxide. Inorganic Materials, 2009, 45, 1246-1251.                                                                                    | 0.2 | 15        |
| 27 | Study of optical, electrical and magnetic properties of composite nanomaterials on the basis of broadband oxide semiconductors. Nanotechnologies in Russia, 2009, 4, 822-827.              | 0.7 | 4         |
| 28 | Fabrication and use of a nanoscale Hall probe for measurements of the magnetic field induced by MFM tips. Nanotechnology, 2009, 20, 189802-189802.                                         | 1.3 | 0         |
| 29 | Synthesis of ZnO nanotetrapods. Inorganic Materials, 2008, 44, 846-852.                                                                                                                    | 0.2 | 14        |
| 30 | Fabrication and use of a nanoscale Hall probe for measurements of the magnetic field induced by MFM tips. Nanotechnology, 2008, 19, 475502.                                                | 1.3 | 16        |
| 31 | Resistance Switching Induced by an Electric Field in ZnO:Li, Fe Nanowires. AIP Conference Proceedings, 2007, , .                                                                           | 0.3 | 6         |
| 32 | Nitrogen concentration in ZnO films grown by magnetron sputtering in an Ar-NO plasma. Russian<br>Microelectronics, 2007, 36, 27-32.                                                        | 0.1 | 2         |
| 33 | Electron transport in high quality undoped ZnO film grown by plasma-assisted molecular beam epitaxy. Solid State Communications, 2006, 137, 474-477.                                       | 0.9 | 16        |
| 34 | Size effect relating to the extraordinary and the ordinary Hall effect in ultrathin Fe-Pt films. Russian<br>Microelectronics, 2006, 35, 392-397.                                           | 0.1 | 6         |
| 35 | Enhancement of the surface and structural properties of ZnO epitaxial films grown on Al2O3 substrates utilizing annealed ZnO buffer layers. Journal of Electroceramics, 2006, 17, 283-285. | 0.8 | 2         |
| 36 | Luminescence of bound excitons in epitaxial ZnO thin films grown by plasma-assisted molecular beam epitaxy. Journal of Applied Physics, 2006, 99, 013502.                                  | 1.1 | 40        |

O V KONONENKO

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Electrical and Magnetic Properties of Doped ZnO Nanowires. Materials Research Society Symposia<br>Proceedings, 2006, 957, 1.                                                                                                            | 0.1 | 2         |
| 38 | Two-dimensional growth of ZnO epitaxial films on c-Al2O3 (0001) substrates with optimized growth temperature and low-temperature buffer layer by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth, 2005, 274, 418-424. | 0.7 | 35        |
| 39 | <title>Bi film growing for nanowire fabrication</title> ., 2004, 5401, 269.                                                                                                                                                             |     | 0         |
| 40 | EXTRAORDINARY HALL EFFECT IN ULTRA-THIN Fe–Pt FILMS AND FABRICATION OF NANOMICRO HALL DEVICES.<br>International Journal of Nanoscience, 2004, 03, 149-154.                                                                              | 0.4 | 7         |
| 41 | Observation of Grain Growth in Cu Films by In-Situ EBSD Analysis. Materials Research Society Symposia<br>Proceedings, 2003, 766, 451.                                                                                                   | 0.1 | 1         |
| 42 | The Initial Growth Stages and Crystallization Mechanism of Bi-based films. Materials Research Society Symposia Proceedings, 2002, 721, 1.                                                                                               | 0.1 | 0         |
| 43 | Texture and microtexture of copper films prepared by the self-ion assisted deposition technique on<br>barrier layers with different structure. Materials Research Society Symposia Proceedings, 2002, 721, 1.                           | 0.1 | 0         |
| 44 | The microstructure of Cu films deposited by the self-ion assisted technique. Journal of Electronic Materials, 2002, 31, 40-44.                                                                                                          | 1.0 | 10        |
| 45 | Electromigration properties of multigrain aluminum thin film conductors as influenced by grain boundary structure. Journal of Materials Research, 2001, 16, 2124-2129.                                                                  | 1.2 | 10        |
| 46 | EM activation energy in aluminum conductors tested by the drift velocity method. Scripta Materialia, 2000, 42, 621-626.                                                                                                                 | 2.6 | 0         |
| 47 | The energy of activation of electromigration in aluminum conductors tested by the drift-velocity method. Russian Microelectronics, 2000, 29, 316-323.                                                                                   | 0.1 | 0         |
| 48 | Relationship Between Structure and Electromigration Characteristics of Pure Aluminum Films.<br>Materials Research Society Symposia Proceedings, 1997, 473, 369.                                                                         | 0.1 | 3         |
| 49 | Relationship Between The Void And Hillock Formation And The Grain Growth In Thin Aluminum Films.<br>Materials Research Society Symposia Proceedings, 1996, 428, 493.                                                                    | 0.1 | 0         |
| 50 | Electromigration in Submicron Wide Copper Lines. Materials Research Society Symposia Proceedings, 1996, 427, 127.                                                                                                                       | 0.1 | 4         |
| 51 | The Improvement of Immunity to Electromigration by Means of Microstructural Design. Materials<br>Research Society Symposia Proceedings, 1996, 428, 231.                                                                                 | 0.1 | 1         |
| 52 | Electromigration In Submicron Wide Copper Lines. Materials Research Society Symposia Proceedings,<br>1996, 428, 61.                                                                                                                     | 0.1 | 2         |
| 53 | Relationship Between The Void and Hillock Formation and The Grain Growth in Thin Aluminum Films.<br>Materials Research Society Symposia Proceedings, 1996, 436, 423.                                                                    | 0.1 | 1         |
| 54 | Anomalous Proximity Effect in the Nb-BiSb-Nb Junctions. Physical Review Letters, 1996, 77, 3029-3032.                                                                                                                                   | 2.9 | 23        |

O V KONONENKO

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The effect of self-ions bombardment on the structure and properties of thin metal films. Vacuum, 1995, 46, 685-690.                                                            | 1.6 | 19        |
| 56 | Giant Peaks of the Conductance in Polycrystalline Bi Nanobridges. Physical Review Letters, 1995, 75, 4286-4289.                                                                | 2.9 | 3         |
| 57 | A new approach to fabrication of nanostructures. Nanotechnology, 1995, 6, 35-39.                                                                                               | 1.3 | 20        |
| 58 | Electromigration activation energy in pure aluminum films deposited by partially ionized beam<br>technique. Scripta Metallurgica Et Materialia, 1995, 33, 1981-1986.           | 1.0 | 17        |
| 59 | Morphology of Damage in Al Films Tested Under Electromigration Conditions Using the Drift Velocity<br>Method. Materials Research Society Symposia Proceedings, 1994, 356, 501. | 0.1 | 3         |
| 60 | The structure and electromigration behaviour of aluminium films deposited by the partially ionized beam technique. Thin Solid Films, 1993, 227, 54-58.                         | 0.8 | 21        |
| 61 | The structure of aluminum films deposited by partially ionized beam. Scripta Metallurgica Et<br>Materialia, 1992, 27, 329-333.                                                 | 1.0 | 12        |
| 62 | information recording. Journal of Magnetism and Magnetic Materials, 1992, 117, 119-125.                                                                                        | 1.0 | 2         |