List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10540066/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eye and hand movements disrupt attentional control. PLoS ONE, 2022, 17, e0262567.	1.1	6
2	The effect of spatial structure on presaccadic attention costs and benefits assessed with dynamic 1/f noise. Journal of Neurophysiology, 2022, 127, 1586-1592.	0.9	10
3	Spatiotopic and saccade-specific transsaccadic memory for object detail. Journal of Vision, 2020, 20, 2.	0.1	7
4	Visual attention and eye movement control during oculomotor competition. Journal of Vision, 2020, 20, 16.	0.1	9
5	Stimulus blanking reveals contrast-dependent transsaccadic feature transfer. Scientific Reports, 2020, 10, 18656.	1.6	6
6	Attention capture outside the oculomotor range. Current Biology, 2020, 30, R1353-R1355.	1.8	10
7	Displacement detection is suppressed by the post-saccadic stimulus. Scientific Reports, 2020, 10, 9273.	1.6	7
8	Theory of visual attention (TVA) in action: Assessing premotor attention in simultaneous eye-hand movements. Cortex, 2020, 133, 133-148.	1.1	14
9	Sensitivity measures of visuospatial attention. Journal of Vision, 2019, 19, 17.	0.1	33
10	The spread of presaccadic attention depends on the spatial configuration of the visual scene. Scientific Reports, 2019, 9, 14034.	1.6	12
11	Visual attention is not limited to the oculomotor range. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9665-9670.	3.3	42
12	Saccade selection and inhibition: motor and attentional components. Journal of Neurophysiology, 2019, 121, 1368-1380.	0.9	7
13	Visual attention is not deployed at the endpoint of averaging saccades. PLoS Biology, 2018, 16, e2006548.	2.6	43
14	Independent selection of eye and hand targets suggests effector-specific attentional mechanisms. Scientific Reports, 2018, 8, 9434.	1.6	38
15	Independent Effects of Eye and Hand Movements on Visual Working Memory. Frontiers in Systems Neuroscience, 2018, 12, 37.	1.2	26
16	The influence of obstacles on grasp planning. Experimental Brain Research, 2018, 236, 2639-2648.	0.7	4
17	Pre-saccadic remapping relies on dynamics of spatial attention. ELife, 2018, 7, .	2.8	29
18	Measuring presaccadic attention without distorting it: A novel dynamic noise paradigm to investigate visuospatial attention. Journal of Vision, 2018, 18, 893.	0.1	1

#	Article	IF	CITATIONS
19	Spatial attention during saccade decisions. Journal of Neurophysiology, 2017, 118, 149-160.	0.9	20
20	Pre- and post-saccadic stimulus timing in saccadic suppression of displacement – A computational model. Vision Research, 2017, 138, 1-11.	0.7	17
21	Sensitivity measures of visuospatial attention. Journal of Vision, 2017, 17, 673.	0.1	2
22	Attention allocation before antisaccades. Journal of Vision, 2016, 16, 11.	0.1	32
23	Presaccadic motion integration between current and future retinotopic locations of attended objects. Journal of Neurophysiology, 2016, 116, 1592-1602.	0.9	22
24	Oculomotor selection underlies feature retention in visual working memory. Journal of Neurophysiology, 2016, 115, 1071-1076.	0.9	48
25	Inhibition of saccades elicits attentional suppression. Journal of Vision, 2013, 13, 9-9.	0.1	16
26	Attention is needed for action control: Further evidence from grasping. Vision Research, 2012, 71, 37-43.	0.7	23
27	Contact points during multidigit grasping of geometric objects. Experimental Brain Research, 2012, 217, 137-151.	0.7	33
28	Human-inspired selection of grasp hypotheses for execution on a humanoid robot. , 2011, , .		3
29	Independent Allocation of Attention to Eye and Hand Targets in Coordinated Eye-Hand Movements. Psychological Science, 2011, 22, 339-347.	1.8	97
30	Predictive remapping of attention across eye movements. Nature Neuroscience, 2011, 14, 252-256.	7.1	308
31	Efficient grasping requires attentional resources. Vision Research, 2011, 51, 1223-1231.	0.7	31
32	Attention and suppression affect tactile perception in reach-to-grasp movements. Acta Psychologica, 2011, 138, 302-310.	0.7	24
33	Advance Planning in Sequential Pick–and–Place Tasks. Journal of Neurophysiology, 2010, 104, 508-516.	0.9	25
34	Effects of altered transport paths and intermediate movement goals on human grasp kinematics. Experimental Brain Research, 2010, 201, 93-109.	0.7	7
35	Bimanual movement control is moderated by fixation strategies. Experimental Brain Research, 2010, 202, 837-850.	0.7	7
36	Landmarks facilitate visual space constancy across saccades and during fixation. Vision Research, 2010, 50, 249-259.	0.7	53

#	Article	IF	CITATIONS
37	Attentional landscapes in reaching and grasping. Vision Research, 2010, 50, 999-1013.	0.7	152
38	Preparing coordinated eye and hand movements: Dual-task costs are not attentional. Journal of Vision, 2010, 10, 23-23.	0.1	11
39	Pre-saccadic perceptual facilitation can occur without covert orienting of attention. Cortex, 2010, 46, 1132-1137.	1.1	29
40	Changes in tactile sensitivity over the time-course of a goal-directed movement. Behavioural Brain Research, 2010, 208, 391-401.	1.2	46
41	Post-saccadic location judgments reveal remapping of saccade targets to non-foveal locations. Journal of Vision, 2009, 9, 29-29.	0.1	101
42	Attentional Selection of Multiple Goal Positions Before Rapid Hand Movement Sequences: An Event-related Potential Study. Journal of Cognitive Neuroscience, 2009, 21, 18-29.	1.1	63
43	Time gaps in mental imagery introduced by competing saccadic tasks. Vision Research, 2009, 49, 2164-2175.	0.7	22
44	Changes in grasping kinematics due to different start postures of the hand. Human Movement Science, 2009, 28, 415-436.	0.6	19
45	Action preparation enhances the processing of tactile targets. Experimental Brain Research, 2009, 198, 301-311.	0.7	18
46	Properties of attentional selection during the preparation of sequential saccades. Experimental Brain Research, 2008, 184, 411-425.	0.7	130
47	The time course of presaccadic attention shifts. Psychological Research, 2008, 72, 630-640.	1.0	154
48	Visual attention during the preparation of bimanual movements. Vision Research, 2008, 48, 549-563.	0.7	60
49	How postsaccadic visual structure affects the detection of intrasaccadic target displacements. , 2007, , 193-212.		6
50	Mental extrapolation of motion modulates responsiveness to visual stimuli. Vision Research, 2006, 46, 2593-2601.	0.7	31
51	Deployment of visual attention before sequences of goal-directed hand movements. Vision Research, 2006, 46, 4355-4374.	0.7	124
52	Different effects of eyelid blinks and target blanking on saccadic suppression of displacement. Perception & Psychophysics, 2004, 66, 772-778.	2.3	35
53	Localization of targets across saccades: Role of landmark objects. Visual Cognition, 2004, 11, 173-202.	0.9	93
54	Delayed Saccades, but Not Delayed Manual Aiming Movements, Require Visual Attention Shifts. Annals of the New York Academy of Sciences, 2003, 1004, 289-296.	1.8	82

#	Article	IF	CITATIONS
55	Attentional selection during preparation of prehension movements. Visual Cognition, 2003, 10, 409-431.	0.9	58
56	Attention, saccade programming, and the timing of eye-movement control. Behavioral and Brain Sciences, 2003, 26, 497-498.	0.4	7
57	Transsaccadic memory of position and form. Progress in Brain Research, 2002, 140, 165-180.	0.9	92
58	Characterizing chunks in visual short-term memory: Not more than one feature per dimension?. Behavioral and Brain Sciences, 2001, 24, 144-145.	0.4	9
59	Attention, Information Processing, and Eye Movement Control. , 2000, , 355-374.		31
60	Picture Changes During Blinks: Looking Without Seeing and Seeing Without Looking. Visual Cognition, 2000, 7, 191-211.	0.9	425
61	Visuomotor mental rotation of saccade direction. Experimental Brain Research, 1999, 127, 224-232.	0.7	16
62	The Subjective Direction of Gaze Shifts Long Before the Saccade. , 1999, , 65-70.		21
63	Immediate post-saccadic information mediates space constancy. Vision Research, 1998, 38, 3147-3159.	0.7	258
64	Selective Dorsal and Ventral Processing: Evidence for a Common Attentional Mechanism in Reaching and Perception. Visual Cognition, 1998, 5, 81-107.	0.9	254
65	Effect of Remote Distractors on Saccade Programming: Evidence for an Extended Fixation Zone. Journal of Neurophysiology, 1997, 78, 1108-1119.	0.9	413
66	Postsaccadic target blanking prevents saccadic suppression of image displacement. Vision Research, 1996, 36, 985-996.	0.7	551
67	Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 1996, 36, 1827-1837.	0.7	1,778
68	Chapter 5 Visual processing and cognitive factors in the generation of saccadic eye movements. Handbook of Perception and Action, 1996, 1, 143-189.	0.1	0
69	Visual Attention and Saccadic Eye Movements: Evidence for Obligatory and Selective Spatial Coupling. Studies in Visual Information Processing, 1995, 6, 317-324.	0.3	38
70	Differential Effect of a Bilateral Deep Cerebellar Nuclei Lesion on Externally and Internally Triggered Saccades in Humans. Neuro-Ophthalmology, 1995, 15, 67-74.	0.4	111
71	Fourth Purkinje image signals reveal eye-lens deviations and retinal image distortions during saccades. Vision Research, 1995, 35, 529-538.	0.7	109
72	Perceptual consequences of ocular lens overshoot during saccadic eye movements. Vision Research, 1995, 35, 2897-2902.	0.7	38

#	Article	IF	CITATIONS
73	Separate adaptive mechanisms for the control of reactive and volitional saccadic eye movements. Vision Research, 1995, 35, 3529-3540.	0.7	158
74	Adaptive Control of Saccade Metrics. , 1991, , 93-100.		15
75	Sensory and motor aspects of saccade control. European Archives of Psychiatry and Neurological Sciences, 1989, 239, 17-22.	0.9	10
76	ADAPTIVITY OF GAIN AND DIRECTION IN OBLIQUE SACCADES. , 1987, , 181-190.		78