
Marten Beeg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1053740/publications.pdf Version: 2024-02-01

MADTEN REEC

#	Article	IF	CITATIONS
1	A Surface Plasmon Resonance-Based Assay for Simultaneous Measurement of Concentrations of and Anti-Drug. Methods in Molecular Biology, 2022, 2313, 323-336.	0.4	0
2	New nanostructures inhibiting human mannose binding lectin identified by a novel surface plasmon resonance assay. Sensors and Actuators B: Chemical, 2022, 360, 131661.	4.0	0
3	Characterization of raloxifene as a potential pharmacological agent against SARS-CoV-2 and its variants. Cell Death and Disease, 2022, 13, .	2.7	9
4	Nonphosphorylated tau slows down Aβ1–42 aggregation, binds to Aβ1–42 oligomers, and reduces Aβ1–4 toxicity. Journal of Biological Chemistry, 2021, 296, 100664.	42 1.6	3
5	Characterization of the neutralizing antiâ€emicizumab antibody in a patient with hemophilia A and inhibitor. Journal of Thrombosis and Haemostasis, 2021, 19, 711-718.	1.9	19
6	Can Antiviral Activity of Licorice Help Fight COVID-19 Infection?. Biomolecules, 2021, 11, 855.	1.8	23
7	Surface plasmon resonance unveils important pitfalls of enzyme-linked immunoassay for the detection of anti-infliximab antibodies in patients' sera. Scientific Reports, 2021, 11, 14976.	1.6	7
8	Doxycycline Inhibition of a Pseudotyped Virus Transduction Does Not Translate to Inhibition of SARS-CoV-2 Infectivity. Viruses, 2021, 13, 1745.	1.5	2
9	A novel hotspot of gelsolin instability triggers an alternative mechanism of amyloid aggregation. Computational and Structural Biotechnology Journal, 2021, 19, 6355-6365.	1.9	2
10	A portable optical-fibre-based surface plasmon resonance biosensor for the detection of therapeutic antibodies in human serum. Scientific Reports, 2020, 10, 11154.	1.6	82
11	The Anti-Amyloidogenic Action of Doxycycline: A Molecular Dynamics Study on the Interaction with Al²42. International Journal of Molecular Sciences, 2019, 20, 4641.	1.8	28
12	A Surface Plasmon Resonance-based assay to measure serum concentrations of therapeutic antibodies and anti-drug antibodies. Scientific Reports, 2019, 9, 2064.	1.6	53
13	Cellular prion protein neither binds to alpha-synuclein oligomers nor mediates their detrimental effects. Brain, 2019, 142, 249-254.	3.7	38
14	Doxycycline counteracts neuroinflammation restoring memory in Alzheimer's disease mouse models. Neurobiology of Aging, 2018, 70, 128-139.	1.5	52
15	Fingolimod Limits Acute Aβ Neurotoxicity and Promotes Synaptic Versus Extrasynaptic NMDA Receptor Functionality in Hippocampal Neurons. Scientific Reports, 2017, 7, 41734.	1.6	27
16	Cardiac Light Chain Amyloidosis: The Role of Metal Ions in Oxidative Stress and Mitochondrial Damage. Antioxidants and Redox Signaling, 2017, 27, 567-582.	2.5	38
17	QSAR model for blood-brain barrier permeation. Journal of Pharmacological and Toxicological Methods, 2017, 88, 7-18.	0.3	33
18	Humanin Specifically Interacts with Amyloid-β Oligomers and Counteracts Their in vivo Toxicity. Journal of Alzheimer's Disease, 2017, 57, 857-871.	1.2	23

Marten Beeg

#	Article	IF	CITATIONS
19	Utilization of the Monte Carlo Method to Build up QSAR Models for Hemolysis and Cytotoxicity of Antimicrobial Peptides. Current Drug Discovery Technologies, 2017, 14, 229-243.	0.6	17
20	The Anti-Prion Antibody 15B3 Detects Toxic Amyloid-β Oligomers. Journal of Alzheimer's Disease, 2016, 53, 1485-1497.	1.2	12
21	Monte Carlo method for predicting of cardiac toxicity: hERG blocker compounds. Toxicology Letters, 2016, 250-251, 42-46.	0.4	31
22	The new β amyloid-derived peptide Aβ1–6A2V-TAT(D) prevents Aβ oligomer formation and protects transgenic C. elegans from Aβ toxicity. Neurobiology of Disease, 2016, 88, 75-84.	2.1	17
23	Clusterin Binds to Al̂21–42 Oligomers with High Affinity and Interferes with Peptide Aggregation by Inhibiting Primary and Secondary Nucleation. Journal of Biological Chemistry, 2016, 291, 6958-6966.	1.6	99
24	Different mutations at V363 MAPT codon are associated with atypical clinical phenotypes and show unusual structural and functional features. Neurobiology of Aging, 2014, 35, 408-417.	1.5	36
25	Novel approaches for studying amyloidogenic peptides/proteins. Current Opinion in Pharmacology, 2013, 13, 797-801.	1.7	15
26	New mutations in MAPT gene causing frontotemporal lobar degeneration: biochemical and structural characterization. Neurobiology of Aging, 2012, 33, 834.e1-834.e6.	1.5	28
27	Specific Recognition of Biologically Active Amyloid-Î ² Oligomers by a New Surface Plasmon Resonance-based Immunoassay and an in Vivo Assay in Caenorhabditis elegans. Journal of Biological Chemistry, 2012, 287, 27796-27805.	1.6	52
28	In Vitro Aggregation Behavior of a Non-Amyloidogenic λ Light Chain Dimer Deriving from U266 Multiple Myeloma Cells. PLoS ONE, 2012, 7, e33372.	1.1	21
29	Time evolution of amyloid fibril length distribution described by a population balance model. Chemical Engineering Science, 2012, 78, 21-32.	1.9	46
30	Use of surface plasmon resonance to study the elongation kinetics and the binding properties of the highly amyloidogenic Aβ1–42 peptide, synthesized by depsi-peptide technique. Biosensors and Bioelectronics, 2011, 26, 2772-2775.	5.3	36
31	A modified protocol to prepare seed-free starting solutions of amyloid-β (Aβ)1–40 and Aβ1–42 from the corresponding depsipeptides. Analytical Biochemistry, 2011, 411, 297-299.	1.1	38
32	Lipid-based nanoparticles with high binding affinity for amyloid-β1–42 peptide. Biomaterials, 2010, 31, 6519-6529.	5.7	190
33	Synthetic amyloid-β oligomers impair long-term memory independently of cellular prion protein. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2295-2300.	3.3	435
34	Development of a Proteolytically Stable Retro-Inverso Peptide Inhibitor of β-Amyloid Oligomerization as a Potential Novel Treatment for Alzheimer's Disease. Biochemistry, 2010, 49, 3261-3272.	1.2	139
35	A Recessive Mutation in the APP Gene with Dominant-Negative Effect on Amyloidogenesis. Science, 2009, 323, 1473-1477.	6.0	357
36	Conformational Plasticity of the Gerstmann–StrÃ ¤ ssler–Scheinker Disease Peptide as Indicated by Its Multiple Aggregation Pathways. Journal of Molecular Biology, 2008, 381, 1349-1361.	2.0	56

#	Article	IF	CITATIONS
37	Gerstmann-Strässler-Scheinker Disease Amyloid Protein Polymerizes According to the "Dock-and-Lock―Model. Journal of Biological Chemistry, 2006, 281, 843-849.	1.6	33