Marc Veillette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10537322/publications.pdf

Version: 2024-02-01

257450 276875 1,786 51 24 41 h-index citations g-index papers 52 52 52 2092 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Cultureâ€independent approach of the bacterial bioaerosol diversity in the standard swine confinement buildings, and assessment of the seasonal effect. Environmental Microbiology, 2008, 10, 665-675.	3.8	157
2	Detection and Quantification of Airborne Norovirus During Outbreaks in Healthcare Facilities. Clinical Infectious Diseases, 2015, 61, 299-304.	5.8	90
3	Ozone efficacy for the control of airborne viruses: Bacteriophage and norovirus models. PLoS ONE, 2020, 15, e0231164.	2.5	89
4	Culture-Independent Characterization of Archaeal Biodiversity in Swine Confinement Building Bioaerosols. Applied and Environmental Microbiology, 2009, 75, 5445-5450.	3.1	83
5	Detection of Airborne Lactococcal Bacteriophages in Cheese Manufacturing Plants. Applied and Environmental Microbiology, 2011, 77, 491-497.	3.1	83
6	Evaluation of Filters for the Sampling and Quantification of RNA Phage Aerosols. Aerosol Science and Technology, 2010, 44, 893-901.	3.1	69
7	Aerosolization of mycobacteria and legionellae during dental treatment: low exposure despite dental unit contamination. Environmental Microbiology, 2007, 9, 2836-2843.	3.8	67
8	Airborne bacteria and antibiotic resistance genes in hospital rooms. Aerobiologia, 2010, 26, 185-194.	1.7	63
9	Characterization of Bioaerosols from Dairy Barns: Reconstructing the Puzzle of Occupational Respiratory Diseases by Using Molecular Approaches. Applied and Environmental Microbiology, 2012, 78, 3242-3248.	3.1	60
10	Immunogenic Properties of Archaeal Species Found in Bioaerosols. PLoS ONE, 2011, 6, e23326.	2.5	60
11	A next generation sequencing approach with a suitable bioinformatics workflow to study fungal diversity in bioaerosols released from two different types of composting plants. Science of the Total Environment, 2017, 601-602, 1306-1314.	8.0	57
12	Human viral pathogens are pervasive in wastewater treatment center aerosols. Journal of Environmental Sciences, 2018, 67, 45-53.	6.1	57
13	Detection of Streptococcus suis in Bioaerosols of Swine Confinement Buildings. Applied and Environmental Microbiology, 2014, 80, 3296-3304.	3.1	54
14	Bioaerosol sampling and detection methods based on molecular approaches: No pain no gain. Science of the Total Environment, 2017, 599-600, 2095-2104.	8.0	54
15	Comparison of the performance of ITS1 and ITS2 as barcodes in amplicon-based sequencing of bioaerosols. PeerJ, 2020, 8, e8523.	2.0	54
16	Bacterial diversity characterization of bioaerosols from cage-housed and floor-housed poultry operations. Environmental Research, 2011, 111, 492-498.	7.5	53
17	Six Month Tracking of Microbial Growth in a Metalworking Fluid After System Cleaning and Recharging. Annals of Occupational Hygiene, 2004, 48, 541-6.	1.9	52
18	Bioaerosol Sampler Choice Should Consider Efficiency and Ability of Samplers To Cover Microbial Diversity. Applied and Environmental Microbiology, 2018, 84, .	3.1	47

#	Article	IF	CITATIONS
19	Low incidence of airborne SARS-CoV-2 in acute care hospital rooms with optimized ventilation. Emerging Microbes and Infections, 2020, 9, 2597-2605.	6.5	39
20	Fungal aerosols at dairy farms using molecular and culture techniques. Science of the Total Environment, 2019, 653, 253-263.	8.0	37
21	Exacerbation induces a microbiota shift in sputa of COPD patients. PLoS ONE, 2018, 13, e0194355.	2.5	34
22	Positive no-touch surfaces and undetectable SARS-CoV-2 aerosols in long-term care facilities: An attempt to understand the contributing factors and the importance of timing in air sampling campaigns. American Journal of Infection Control, 2021, 49, 701-706.	2.3	34
23	Bacteria emitted in ambient air during bronchoscopy—a risk to health care workers?. American Journal of Infection Control, 2016, 44, 1634-1638.	2.3	30
24	Bioaerosols Play a Major Role in the Nasopharyngeal Microbiota Content in Agricultural Environment. International Journal of Environmental Research and Public Health, 2019, 16, 1375.	2.6	27
25	Workers' exposure to bioaerosols from three different types of composting facilities. Journal of Occupational and Environmental Hygiene, 2017, 14, 815-822.	1.0	26
26	Metalworking Fluid-Related Aerosols in Machining Plants. Journal of Occupational and Environmental Hygiene, 2010, 7, 280-289.	1.0	25
27	Microbial Contents of Vacuum Cleaner Bag Dust and Emitted Bioaerosols and Their Implications for Human Exposure Indoors. Applied and Environmental Microbiology, 2013, 79, 6331-6336.	3.1	25
28	Identification of mycobacteria in peat moss processing plants: application of molecular biology approaches. Canadian Journal of Microbiology, 2007, 53, 92-99.	1.7	24
29	Archaeal characterization of bioaerosols from cage-housed and floor-housed poultry operations. Canadian Journal of Microbiology, 2013, 59, 46-50.	1.7	24
30	Preferential aerosolization of Actinobacteria during handling of composting organic matter. Journal of Aerosol Science, 2018, 116, 83-91.	3.8	21
31	Recovery of Fungal Cells from Air Samples: a Tale of Loss and Gain. Applied and Environmental Microbiology, 2019, 85, .	3.1	21
32	Fungal bioaerosols in biomethanization facilities. Journal of the Air and Waste Management Association, 2018, 68, 1198-1210.	1.9	20
33	Bioaerosols concentrations in working areas in biomethanization facilities. Journal of the Air and Waste Management Association, 2017, 67, 1258-1271.	1.9	19
34	Non-small cell lung cancer microbiota characterization: Prevalence of enteric and potentially pathogenic bacteria in cancer tissues. PLoS ONE, 2021, 16, e0249832.	2.5	19
35	Impact of serotype and sequence type on the preferential aerosolization of Streptococcus suis. BMC Research Notes, 2016, 9, 273.	1.4	18
36	Evidence for Environmental–Human Microbiota Transfer at a Manufacturing Facility with Novel Work-related Respiratory Disease. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1678-1688.	5.6	16

3

#	Article	IF	CITATIONS
37	Re-aerosolization in liquid-based air samplers induces bias in bacterial diversity. Aerosol Science and Technology, 2019, 53, 1244-1260.	3.1	10
38	Condensation sampler efficiency for the recovery and infectivity preservation of viral bioaerosols. Aerosol Science and Technology, 2021, 55, 653-664.	3.1	10
39	Indoor air quality assessment in dwellings with different ventilation strategies in Nunavik and impacts on bacterial and fungal microbiota. Indoor Air, 2021, 31, 2213-2225.	4.3	9
40	In Silico Study Suggesting the Bias of Primers Choice in the Molecular Identification of Fungal Aerosols. Journal of Fungi (Basel, Switzerland), 2021, 7, 99.	3.5	9
41	Work-Related Health Effects in Swine Building Workers After Respiratory Protection Use. Journal of Occupational and Environmental Medicine, 2012, 54, 1126-1132.	1.7	7
42	Development of a robust protocol for the characterization of the pulmonary microbiota. Communications Biology, 2021, 4, 164.	4.4	7
43	Organic components of airborne dust influence the magnitude and kinetics of dendritic cell activation. Toxicology in Vitro, 2018, 50, 391-398.	2.4	5
44	Immunologic mechanisms in the adaptation of swine farm workers to their work environment. Innate Immunity, 2013, 19, 403-410.	2.4	4
45	Archaea and Bacteria Exposure in Danish Livestock Farmers. Annals of Work Exposures and Health, 2019, 63, 965-974.	1.4	4
46	Microbial composition of bioaerosols in indoor wastewater treatment plants. Aerobiologia, 2022, 38, 35-50.	1.7	4
47	Bioaerosols in public and tourist buses. Aerobiologia, 2021, 37, 525-541.	1.7	2
48	Influence of seasons and sites on bioaerosols in indoor wastewater treatment plants and proposal for air quality indicators. Journal of the Air and Waste Management Association, 2022, 72, 1000-1011.	1.9	2
49	Conifer Needle Phyllosphere as a Potential Passive Monitor of Bioaerosolised Antibiotic Resistance Genes. Antibiotics, 2022, 11, 907.	3.7	2
50	High and low flowrate sampling of airborne influenza in hospital rooms during three outbreaks. Journal of Aerosol Science, 2021, 158, 105824.	3.8	1
51	A case of primary COVID-19 pneumonia: plausible airborne transmission of SARS-CoV-2. European Journal of Medical Research, 2022, 27, 50.	2.2	1