Noah Weisleder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10537055/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The C2 domains of dysferlin: roles in membrane localization, Ca ²⁺ signalling and sarcolemmal repair. Journal of Physiology, 2022, 600, 1953-1968.	2.9	6
2	Reduced Sarcolemmal Membrane Repair Exacerbates Striated Muscle Pathology in a Mouse Model of Duchenne Muscular Dystrophy. Cells, 2022, 11, 1417.	4.1	1
3	Contrasting Effects of Age on Muscle Contractility in Male and Female Rats. FASEB Journal, 2022, 36, .	0.5	0
4	Multiple poloxamers increase plasma membrane repair capacity in muscle and nonmuscle cells. American Journal of Physiology - Cell Physiology, 2020, 318, C253-C262.	4.6	16
5	Investigating genetic drivers of dermatomyositis pathogenesis using meta-analysis. Heliyon, 2020, 6, e04866.	3.2	10
6	Enhancing membrane repair increases regeneration in a sciatic injury model. PLoS ONE, 2020, 15, e0231194.	2.5	7
7	Autoantibodies targeting TRIM72 compromise membrane repair and contribute to inflammatory myopathy. Journal of Clinical Investigation, 2020, 130, 4440-4455.	8.2	10
8	Recombinant Human MG53 Mediated Protection against Injury to Neuronal Cells. FASEB Journal, 2019, 33, 848.2.	0.5	0
9	Non-contrast estimation of diffuse myocardial fibrosis with dual energy CT: A phantom study. Journal of Cardiovascular Computed Tomography, 2018, 12, 74-80.	1.3	9
10	Modulating Cytoskeletal Structure And Cellular Signaling To Target Neuron Cell Membrane Repair. FASEB Journal, 2018, 32, 864.8.	0.5	0
11	Targeted deletion of Kcne3 impairs skeletal muscle function in mice. FASEB Journal, 2017, 31, 2937-2947.	0.5	2
12	Renin-angiotensin-aldosterone system inhibitors improve membrane stability and change gene-expression profiles in dystrophic skeletal muscles. American Journal of Physiology - Cell Physiology, 2017, 312, C155-C168.	4.6	17
13	Treatment with Recombinant Human MG53 Protein Increases Membrane Integrity in a Mouse Model of Limb Girdle Muscular Dystrophy 2B. Molecular Therapy, 2017, 25, 2360-2371.	8.2	37
14	High-Throughput Microplate-Based Assay to Monitor Plasma Membrane Wounding and Repair. Frontiers in Cellular and Infection Microbiology, 2017, 7, 305.	3.9	9
15	Plasma Membrane Repair: A Central Process for Maintaining Cellular Homeostasis. Physiology, 2015, 30, 438-448.	3.1	85
16	Cardioprotection of recombinant human MG53 protein in a porcine model of ischemia and reperfusion injury. Journal of Molecular and Cellular Cardiology, 2015, 80, 10-19.	1.9	91
17	Novel excitation-contraction coupling related genes reveal aspects of muscle weakness beyond atrophy—new hopes for treatment of musculoskeletal diseases. Frontiers in Physiology, 2014, 5, 37.	2.8	37
18	Treatment of acute lung injury by targeting MG53-mediated cell membrane repair. Nature Communications, 2014, 5, 4387.	12.8	100

NOAH WEISLEDER

#	Article	IF	CITATIONS
19	Assessment of Calcium Sparks in Intact Skeletal Muscle Fibers. Journal of Visualized Experiments, 2014, , e50898.	0.3	9
20	TRIM Proteins in Therapeutic Membrane Repair of Muscular Dystrophy. JAMA Neurology, 2013, 70, 928.	9.0	31
21	Type 1 Inositol (1,4,5)-Trisphosphate Receptor Activates Ryanodine Receptor 1 to Mediate Calcium Spark Signaling in Adult Mammalian Skeletal Muscle. Journal of Biological Chemistry, 2013, 288, 2103-2109.	3.4	39
22	A Dual Mode Pulsed Electro-Magnetic Cell Stimulator Produces Acceleration of Myogenic Differentiation. Recent Patents on Biotechnology, 2013, 7, 71-81.	0.8	6
23	Analysis of osmotic stress induced Ca2+ spark termination in mammalian skeletal muscle. Indian Journal of Biochemistry and Biophysics, 2013, 50, 411-8.	0.0	0
24	Expression levels of sarcolemmal membrane repair proteins following prolonged exercise training in mice. Indian Journal of Biochemistry and Biophysics, 2013, 50, 428-35.	0.0	2
25	Recombinant MG53 Protein Modulates Therapeutic Cell Membrane Repair in Treatment of Muscular Dystrophy. Science Translational Medicine, 2012, 4, 139ra85.	12.4	165
26	Enhancing Muscle Membrane Repair by Gene Delivery of MG53 Ameliorates Muscular Dystrophy and Heart Failure in δ-Sarcoglycan-deficient Hamsters. Molecular Therapy, 2012, 20, 727-735.	8.2	82
27	Nonmuscle myosin IIA facilitates vesicle trafficking for MG53â€mediated cell membrane repair. FASEB Journal, 2012, 26, 1875-1883.	0.5	64
28	Detection of Calcium Sparks in Intact and Permeabilized Skeletal Muscle Fibers. Methods in Molecular Biology, 2012, 798, 395-410.	0.9	9
29	Orai1 Mediates Exacerbated Ca2+ Entry in Dystrophic Skeletal Muscle. PLoS ONE, 2012, 7, e49862.	2.5	61
30	Poloxamer 188 (P188) as a Membrane Resealing Reagent in Biomedical Applications. Recent Patents on Biotechnology, 2012, 6, 200-211.	0.8	97
31	Store-operated calcium entry is present in HL-1 cardiomyocytes and contributes to resting calcium. Biochemical and Biophysical Research Communications, 2011, 416, 45-50.	2.1	46
32	Visualization of MG53-mediated Cell Membrane Repair Using in vivo and in vitro Systems. Journal of Visualized Experiments, 2011, , .	0.3	17
33	Dysferlin, Annexin A1, and Mitsugumin 53 Are Upregulated in Muscular Dystrophy and Localize to Longitudinal Tubules of the T-System With Stretch. Journal of Neuropathology and Experimental Neurology, 2011, 70, 302-313.	1.7	77
34	Mitochondrial Calcium Uptake Regulates Rapid Calcium Transients in Skeletal Muscle during Excitation-Contraction (E-C) Coupling. Journal of Biological Chemistry, 2011, 286, 32436-32443.	3.4	80
35	A versatile singleâ€plasmid system for tissueâ€specific and inducible control of gene expression in transgenic mice. FASEB Journal, 2011, 25, 2638-2649	0.5	21
36	Amphipathic Tail-anchoring Peptide and Bcl-2 Homology Domain-3 (BH3) Peptides from Bcl-2 Family Proteins Induce Apoptosis through Different Mechanisms. Journal of Biological Chemistry, 2011, 286, 9038-9048.	3.4	27

NOAH WEISLEDER

#	Article	IF	CITATIONS
37	Junctophilin-2 Expression Silencing Causes Cardiocyte Hypertrophy and Abnormal Intracellular Calcium-Handling. Circulation: Heart Failure, 2011, 4, 214-223.	3.9	92
38	Polymerase Transcriptase Release Factor (PTRF) Anchors MG53 Protein to Cell Injury Site for Initiation of Membrane Repair. Journal of Biological Chemistry, 2011, 286, 12820-12824.	3.4	87
39	Redox-dependent oligomerization through a leucine zipper motif is essential for MG53-mediated cell membrane repair. American Journal of Physiology - Cell Physiology, 2011, 301, C106-C114.	4.6	67
40	Disrupted Membrane Structure and Intracellular Ca2+ Signaling in Adult Skeletal Muscle with Acute Knockdown of Bin1. PLoS ONE, 2011, 6, e25740.	2.5	47
41	Store-Operated Ca2+ Entry (SOCE) Contributes to Normal Skeletal Muscle Contractility in young but not in aged skeletal muscle. Aging, 2011, 3, 621-634.	3.1	53
42	S165F mutation of junctophilin 2 affects Ca2+ signalling in skeletal muscle. Biochemical Journal, 2010, 427, 125-134.	3.7	45
43	MG53 Constitutes a Primary Determinant of Cardiac Ischemic Preconditioning. Circulation, 2010, 121, 2565-2574.	1.6	169
44	Cardioprotection of Ischemia/Reperfusion Injury by Cholesterol-Dependent MG53-Mediated Membrane Repair. Circulation Research, 2010, 107, 76-83.	4.5	128
45	Repression of Cardiac Phospholamban Gene Expression Is Mediated by Thyroid Hormone Receptor-α1 and Involves Targeted Covalent Histone Modifications. Endocrinology, 2010, 151, 2946-2956.	2.8	29
46	Increased Store-Operated Ca2+ Entry in Skeletal Muscle with Reduced Calsequestrin-1 Expression. Biophysical Journal, 2010, 99, 1556-1564.	0.5	43
47	MG53 Regulates Membrane Budding and Exocytosis in Muscle Cells. Journal of Biological Chemistry, 2009, 284, 3314-3322.	3.4	99
48	Membrane Repair Defects in Muscular Dystrophy Are Linked to Altered Interaction between MG53, Caveolin-3, and Dysferlin. Journal of Biological Chemistry, 2009, 284, 15894-15902.	3.4	227
49	Mitsugumin 53 (MG53) facilitates vesicle trafficking in striated muscle to contribute to cell membrane repair. Communicative and Integrative Biology, 2009, 2, 225-226.	1.4	56
50	MG53 nucleates assembly of cell membrane repair machinery. Nature Cell Biology, 2009, 11, 56-64.	10.3	396
51	Compromised storeâ€operated Ca ²⁺ entry in aged skeletal muscle. Aging Cell, 2008, 7, 561-568.	6.7	77
52	lmmuno-proteomic approach to excitation–contraction coupling in skeletal and cardiac muscle: Molecular insights revealed by the mitsugumins. Cell Calcium, 2008, 43, 1-8.	2.4	60
53	Altered Ca2+ sparks in aging skeletal and cardiac muscle. Ageing Research Reviews, 2008, 7, 177-188.	10.9	33
54	A missense mutation in desmin tail domain linked to human dilated cardiomyopathy promotes cleavage of the head domain and abolishes its Zâ€disc localization. FASEB Journal, 2008, 22, 3318-3327.	0.5	40

NOAH WEISLEDER

#	Article	IF	CITATIONS
55	Store-Operated Ca2+ Entry in Muscle Physiology. Current Chemical Biology, 2007, 1, 87-95.	0.5	1
56	The tail-anchoring domain of Bfl1 and HCCS1 targets mitochondrial membrane permeability to induce apoptosis. Journal of Cell Science, 2007, 120, 2912-2923.	2.0	31
57	Mutations in JPH2-encoded junctophilin-2 associated with hypertrophic cardiomyopathy in humans. Journal of Molecular and Cellular Cardiology, 2007, 42, 1026-1035.	1.9	165
58	TRIC channels are essential for Ca2+ handling in intracellular stores. Nature, 2007, 448, 78-82.	27.8	149
59	Systemic ablation of RyR3 alters Ca2+ spark signaling in adult skeletal muscle. Cell Calcium, 2007, 42, 548-555.	2.4	21
60	Uncoupling Store-Operated Ca2+ Entry and Altered Ca2+ Release from Sarcoplasmic Reticulum through Silencing of Junctophilin Genes. Biophysical Journal, 2006, 90, 4418-4427.	0.5	85
61	Ca2+ sparks as a plastic signal for skeletal muscle health, aging, and dystrophy. Acta Pharmacologica Sinica, 2006, 27, 791-798.	6.1	16
62	Muscle aging is associated with compromised Ca2+ spark signaling and segregated intracellular Ca2+ release. Journal of Cell Biology, 2006, 174, 639-645.	5.2	120
63	Azumolene Inhibits a Component of Store-operated Calcium Entry Coupled to the Skeletal Muscle Ryanodine Receptor. Journal of Biological Chemistry, 2006, 281, 33477-33486.	3.4	87
64	Enhanced resistance to fatigue and altered calcium handling properties of sarcalumenin knockout mice. Physiological Genomics, 2005, 23, 72-78.	2.3	73
65	Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle. Nature Cell Biology, 2005, 7, 525-530.	10.3	151
66	Alterations in the heart mitochondrial proteome in a desmin null heart failure model. Journal of Molecular and Cellular Cardiology, 2005, 38, 461-474.	1.9	57
67	Bcl-2 overexpression corrects mitochondrial defects and ameliorates inherited desmin null cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 769-774.	7.1	120
68	Cardiomyocyte-specific desmin rescue of desmin null cardiomyopathy excludes vascular involvement. Journal of Molecular and Cellular Cardiology, 2004, 36, 121-128.	1.9	27
69	Structural and Functional Roles of Desmin in Mouse Skeletal Muscle during Passive Deformation. Biophysical Journal, 2004, 86, 2993-3008.	0.5	112
70	Desmin Cytoskeleton Linked to Muscle Mitochondrial Distribution and Respiratory Function. Journal of Cell Biology, 2000, 150, 1283-1298.	5.2	330