Amanda K A Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10536362/publications.pdf Version: 2024-02-01

ΔΜΑΝΠΑ Κ Δ SUVA

#	Article	IF	CITATIONS
1	Combining Magnetic Hyperthermia and Photodynamic Therapy for Tumor Ablation with Photoresponsive Magnetic Liposomes. ACS Nano, 2015, 9, 2904-2916.	14.6	284
2	Modification of Extracellular Vesicles by Fusion with Liposomes for the Design of Personalized Biogenic Drug Delivery Systems. ACS Nano, 2018, 12, 6830-6842.	14.6	276
3	Heat-Generating Iron Oxide Nanocubes: Subtle "Destructurators―of the Tumoral Microenvironment. ACS Nano, 2014, 8, 4268-4283.	14.6	200
4	Magnetic (Hyper)Thermia or Photothermia? Progressive Comparison of Iron Oxide and Gold Nanoparticles Heating in Water, in Cells, and In Vivo. Advanced Functional Materials, 2018, 28, 1803660.	14.9	187
5	Iron Oxide Nanoflowers @ CuS Hybrids for Cancer Tri-Therapy: Interplay of Photothermal Therapy, Magnetic Hyperthermia and Photodynamic Therapy. Theranostics, 2019, 9, 1288-1302.	10.0	170
6	Cancer Cell Internalization of Gold Nanostars Impacts Their Photothermal Efficiency In Vitro and In Vivo: Toward a Plasmonic Thermal Fingerprint in Tumoral Environment. Advanced Healthcare Materials, 2016, 5, 1040-1048.	7.6	124
7	Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 645-655.	3.3	118
8	Targeted thermal therapy with genetically engineered magnetite magnetosomes@RGD: Photothermia is far more efficient than magnetic hyperthermia. Journal of Controlled Release, 2018, 279, 271-281.	9.9	110
9	Magnetic and Photoresponsive Theranosomes: Translating Cell-Released Vesicles into Smart Nanovectors for Cancer Therapy. ACS Nano, 2013, 7, 4954-4966.	14.6	105
10	Massive release of extracellular vesicles from cancer cells after photodynamic treatment or chemotherapy. Scientific Reports, 2016, 6, 35376.	3.3	98
11	Intracellular Biodegradation of Ag Nanoparticles, Storage in Ferritin, and Protection by a Au Shell for Enhanced Photothermal Therapy. ACS Nano, 2018, 12, 6523-6535.	14.6	91
12	Extracellular vesicles for personalized medicine: The input of physically triggered production, loading and theranostic properties. Advanced Drug Delivery Reviews, 2019, 138, 247-258.	13.7	82
13	Nanoparticle-based hyperthermia, a local treatment modulating the tumor extracellular matrix. Pharmacological Research, 2017, 126, 123-137.	7.1	63
14	Technological advances towards extracellular vesicles mass production. Advanced Drug Delivery Reviews, 2021, 176, 113843.	13.7	63
15	Thermoresponsive Gel Embedded with Adipose Stem-Cell-Derived Extracellular Vesicles Promotes Esophageal Fistula Healing in a Thermo-Actuated Delivery Strategy. ACS Nano, 2018, 12, 9800-9814.	14.6	60
16	lmmune Reprogramming Precision Photodynamic Therapy of Peritoneal Metastasis by Scalable Stem-Cell-Derived Extracellular Vesicles. ACS Nano, 2021, 15, 3251-3263.	14.6	47
17	Development of extracellular vesicle-based medicinal products: A position paper of the group "Extracellular Vesicle translatiOn to clinicaL perspectiVEs – EVOLVE France― Advanced Drug Delivery Reviews, 2021, 179, 114001.	13.7	42
18	Physical oncology: New targets for nanomedicine. Biomaterials, 2018, 150, 87-99.	11.4	36

Amanda K A Silva

#	Article	IF	CITATIONS
19	Engineering and loading therapeutic extracellular vesicles for clinical translation: A data reporting frame for comparability. Advanced Drug Delivery Reviews, 2021, 178, 113972.	13.7	36
20	Extracellular Vesicle Production Loaded with Nanoparticles and Drugs in a Tradeâ€off between Loading, Yield and Purity: Towards a Personalized Drug Delivery System. Advanced Biology, 2017, 1, e1700044.	3.0	28
21	mTHPC-Loaded Extracellular Vesicles Significantly Improve mTHPC Diffusion and Photodynamic Activity in Preclinical Models. Pharmaceutics, 2020, 12, 676.	4.5	17
22	Thinking Quantitatively of RNA-Based Information Transfer via Extracellular Vesicles: Lessons to Learn for the Design of RNA-Loaded EVs. Pharmaceutics, 2021, 13, 1931.	4.5	12
23	Magnetic drug carriers: bright insights from light-responsive magnetic liposomes. Nanomedicine, 2015, 10, 2797-2799.	3.3	8
24	Imaging and Therapeutic Potential of Extracellular Vesicles. , 2017, , 43-68.		8
25	Impact of Photosensitizers Activation on Intracellular Trafficking and Viscosity. PLoS ONE, 2013, 8, e84850.	2.5	7
26	Regenerative medicine for digestive fistulae therapy: Benefits, challenges and promises of stem/stromal cells and emergent perspectives via their extracellular vesicles. Advanced Drug Delivery Reviews, 2021, 179, 113841.	13.7	5
27	Potential of onâ€chip analysis and engineering techniques for extracellular vesicle bioproduction for therapeutics. View, 2022, 3, .	5.3	5