Wayne Newhauser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10536299/publications.pdf Version: 2024-02-01

MAYNE NEWHALISED

#	Article	IF	CITATIONS
1	Monte Carlo study of neutron dose equivalent during passive scattering proton therapy. Physics in Medicine and Biology, 2007, 52, 4481-4496.	1.6	109
2	Monte Carlo simulations for configuring and testing an analytical proton dose-calculation algorithm. Physics in Medicine and Biology, 2007, 52, 4569-4584.	1.6	98
3	Proton therapy for adults with mediastinal lymphomas: the International Lymphoma Radiation Oncology Group guidelines. Blood, 2018, 132, 1635-1646.	0.6	86
4	Monte Carlo simulations of the dosimetric impact of radiopaque fiducial markers for proton radiotherapy of the prostate. Physics in Medicine and Biology, 2007, 52, 2937-2952.	1.6	83
5	Equivalent dose and effective dose from stray radiation during passively scattered proton radiotherapy for prostate cancer. Physics in Medicine and Biology, 2008, 53, 1677-1688.	1.6	83
6	Monte Carlo simulations of neutron spectral fluence, radiation weighting factor and ambient dose equivalent for a passively scattered proton therapy unit. Physics in Medicine and Biology, 2008, 53, 187-201.	1.6	63
7	Dose perturbations from implanted helical gold markers in proton therapy of prostate cancer. Journal of Applied Clinical Medical Physics, 2009, 10, 63-70.	0.8	55
8	Monte Carlo simulations of stray neutron radiation exposures in proton therapy. Journal of Nuclear Materials, 2007, 361, 289-297.	1.3	42
9	Anonymization of DICOM electronic medical records for radiation therapy. Computers in Biology and Medicine, 2014, 53, 134-140.	3.9	40
10	A treatment planning comparison of volumetric modulated arc therapy and proton therapy for a sample of breast cancer patients treated with post-mastectomy radiotherapy. Journal of Proton Therapy, 2016, 1, 119.	0.6	24
11	Predictive Risk of Radiation Induced Cerebral Necrosis in Pediatric Brain Cancer Patients after VMAT Versus Proton Therapy. Cancers, 2015, 7, 617-630.	1.7	23
12	A Clarion Call for Large-Scale Collaborative Studies of Pediatric Proton Therapy. International Journal of Radiation Oncology Biology Physics, 2017, 98, 980-981.	0.4	23
13	Monte Carlo simulation of the neutron spectral fluence and dose equivalent for use in shielding a proton therapy vault. Physics in Medicine and Biology, 2009, 54, 6943-6957.	1.6	20
14	Monte Carlo and analytical model predictions of leakage neutron exposures from passively scattered proton therapy. Medical Physics, 2013, 40, 121714.	1.6	18
15	Radiation-induced cancer risk predictions in proton and heavy ion radiotherapy. Physica Medica, 2017, 42, 259-262.	0.4	18
16	An Analytical Model of Leakage Neutron Equivalent Dose for Passively-Scattered Proton Radiotherapy and Validation with Measurements. Cancers, 2015, 7, 795-810.	1.7	14
17	Implementation of an Analytical Model for Leakage Neutron Equivalent Dose in a Proton Radiotherapy Planning System. Cancers, 2015, 7, 427-438.	1.7	14
18	Inter-Institutional Comparison of Personalized Risk Assessments for Second Malignant Neoplasms for a 13-Year-Old Girl Receiving Proton versus Photon Craniospinal Irradiation. Cancers, 2015, 7, 407-426.	1.7	14

#	Article	IF	CITATIONS
19	Normal tissue damage: its importance, history and challenges for the future. British Journal of Radiology, 2019, 92, 20180048.	1.0	12
20	A modular dose delivery system for treating moving targets with scanned ion beams: Performance and safety characteristics, and preliminary tests. Physica Medica, 2020, 76, 307-316.	0.4	12
21	Everything you wanted to know about space radiation but were afraid to ask. Journal of Environmental Science and Health, Part C: Toxicology and Carcinogenesis, 2021, 39, 113-128.	0.4	8
22	Grid-Enabled Treatment Planning for Proton Therapy Using Monte Carlo Simulations. Nuclear Technology, 2011, 175, 16-21.	0.7	7
23	Tumour size can have an impact on the outcomes of epidemiological studies on second cancers after radiotherapy. Radiation and Environmental Biophysics, 2018, 57, 311-319.	0.6	7
24	Three discipline collaborative radiation therapy (3DCRT) special debate: The United States should build additional proton therapy facilities. Journal of Applied Clinical Medical Physics, 2019, 20, 7-12.	0.8	7
25	Reducing the Cost of Proton Radiation Therapy: The Feasibility of a Streamlined Treatment Technique for Prostate Cancer. Cancers, 2015, 7, 688-705.	1.7	6
26	Dosimetric Validation of a System to Treat Moving Tumors Using Scanned Ion Beams That Are Synchronized With Anatomical Motion. Frontiers in Oncology, 2021, 11, 712126.	1.3	5
27	A Modular System for Treating Moving Anatomical Targets With Scanned Ion Beams at Multiple Facilities: Pre-Clinical Testing for Quality and Safety of Beam Delivery. Frontiers in Oncology, 2021, 11, 620388.	1.3	4
28	Personalized 3D-printed anthropomorphic phantoms for dosimetry in charged particle fields. Physics in Medicine and Biology, 2021, 66, .	1.6	3
29	Preliminary tests of dosimetric quality and projected therapeutic outcomes of multi-phase 4D radiotherapy with proton and carbon ion beams. Physics in Medicine and Biology, 2021, 66, 235004.	1.6	3
30	Reply to â€~Comments on "Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation'― Physics in Medicine and Biology, 2010, 55, L31-L32.	1.6	2
31	Impact of multileaf collimator configuration parameters on the dosimetric accuracy of 6-MV Intensity-Modulated radiation therapy treatment plans. Journal of Medical Physics, 2017, 42, 151.	0.1	2
32	A patient-specific hybrid phantom for calculating radiation dose and equivalent dose to the whole body. Physics in Medicine and Biology, 2022, 67, 035005.	1.6	2
33	Cell-shaped silicon-on-insulator microdosimeters: characterization and response to 239PuBe irradiations. Australasian Physical and Engineering Sciences in Medicine, 2017, 40, 667-673.	1.4	0