Shweta Tripathi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10536141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of Taenia solium cyst fluid-based enzyme linked immunoelectro transfer blot for Neurocysticercosis diagnosis in urban and highly endemic rural population of North India. Clinica Chimica Acta, 2020, 508, 16-21.	0.5	6
2	Unveiling <i>Taenia solium</i> kinome profile and its potential for new therapeutic targets. Expert Review of Proteomics, 2020, 17, 85-94.	1.3	4
3	Development of multi-epitope chimeric vaccine against <i>Taenia solium</i> by exploring its proteome: <i>an in silico</i> approach. Expert Review of Vaccines, 2020, 19, 105-114.	2.0	27
4	Neglected Agent Eminent Disease: Linking Human Helminthic Infection, Inflammation, and Malignancy. Frontiers in Cellular and Infection Microbiology, 2019, 9, 402.	1.8	20
5	Molecular Neuro-Pathomechanism of Neurocysticercosis: How Host Genetic Factors Influence Disease Susceptibility. Molecular Neurobiology, 2018, 55, 1019-1025.	1.9	12
6	Collectins, H-ficolin and LL-37 reduce influence viral replication in human monocytes and modulate virus-induced cytokine production. Innate Immunity, 2017, 23, 77-88.	1.1	21
7	Micromanagement of Immune System: Role of miRNAs in Helminthic Infections. Frontiers in Microbiology, 2017, 8, 586.	1.5	53
8	Identifying the Critical Domain of LL-37 Involved in Mediating Neutrophil Activation in the Presence of Influenza Virus: Functional and Structural Analysis. PLoS ONE, 2015, 10, e0133454.	1.1	21
9	Antiviral Activity of the Human Cathelicidin, LL-37, and Derived Peptides on Seasonal and Pandemic Influenza A Viruses. PLoS ONE, 2015, 10, e0124706.	1.1	72
10	Arginine-rich histones have strong antiviral activity for influenza A viruses. Innate Immunity, 2015, 21, 736-745.	1.1	45
11	The amazing innate immune response to influenza A virus infection. Innate Immunity, 2015, 21, 73-98.	1.1	68
12	LL-37 modulates human neutrophil responses to influenza A virus. Journal of Leukocyte Biology, 2014, 96, 931-938.	1.5	69
13	Mutations flanking the carbohydrate binding site of surfactant protein D confer antiviral activity for pandemic influenza A viruses. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L1036-L1044.	1.3	19
14	Genetic polymorphism of cytochrome P450 (CYP) 1A1, CYP1A2, and CYP2E1 genes modulate susceptibility to gastric cancer in patients with Helicobacter pylori infection. Gastric Cancer, 2014, 17, 226-234.	2.7	27
15	Alzheimer's Associated β-Amyloid Protein Inhibits Influenza A Virus and Modulates Viral Interactions with Phagocytes. PLoS ONE, 2014, 9, e101364.	1.1	143
16	Association of microsomal epoxide hydrolase exon 3 Tyr113His and exon 4 His139Arg polymorphisms with gastric cancer in India. Indian Journal of Gastroenterology, 2013, 32, 246-252.	0.7	7
17	The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins. Journal of General Virology, 2013, 94, 40-49.	1.3	165
18	Human H-Ficolin Inhibits Replication of Seasonal and Pandemic Influenza A Viruses. Journal of Immunology, 2012, 189, 2478-2487.	0.4	57

Shweta Tripathi

#	Article	IF	CITATIONS
19	Patients with Helicobacter pylori infection have less severe gastroesophageal reflux disease: a study using endoscopy, 24-hour gastric and esophageal pH metry. Indian Journal of Gastroenterology, 2011, 30, 12-21.	0.7	19
20	Association between gastric mucosal glutathione-S-transferase activity, glutathione-S-transferase gene polymorphisms and Helicobacter pylori infection in gastric cancer. Indian Journal of Gastroenterology, 2011, 30, 257-263.	0.7	19
21	Review: Defensins and cathelicidins in lung immunity. Innate Immunity, 2010, 16, 151-159.	1.1	154
22	Genotypic and Functional Roles of IL-1B and IL-1RN on the Risk of Gastroesophageal Reflux Disease: The Presence of IL-1Bâ^'511*T/IL-1RN*1 (T1) Haplotype May Protect Against the Disease. American Journal of Gastroenterology, 2009, 104, 2704-2713.	0.2	47
23	Frequency of Helicobacter pylori and CagA Antibody in Patients with Gastric Neoplasms and Controls: The Indian Enigma. Digestive Diseases and Sciences, 2008, 53, 1215-1222.	1.1	39
24	Gastric carcinogenesis: Possible role of polymorphisms of GSTM1, GSTT1, and GSTP1 genes. Scandinavian Journal of Gastroenterology, 2008, 43, 431-439.	0.6	46
25	Relationship of severity of gastroesophageal reflux disease with gastric acid secretory profile and esophageal acid exposure during nocturnal acid breakthrough: A study using 24-h dual-channel pH-metry. Scandinavian Journal of Gastroenterology, 2008, 43, 654-661.	0.6	23
26	The Indian Enigma of Frequent H. pylori Infection but Infrequent Gastric Cancer: Is the Magic Key in Indian Diet, Host's Genetic Make Up, or Friendly Bug?. American Journal of Gastroenterology, 2007, 102, 2113-2114.	0.2	30