
Woojin Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10533770/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The application of graphene as electrodes in electrical and optical devices. Nanotechnology, 2012, 23, 112001.	1.3	329
2	Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology, 2010, 21, 175201.	1.3	259
3	Highly Flexible and Transparent Multilayer MoS ₂ Transistors with Graphene Electrodes. Small, 2013, 9, 3295-3300.	5.2	189
4	Enhanced Charge Injection in Pentacene Fieldâ€Effect Transistors with Graphene Electrodes. Advanced Materials, 2011, 23, 100-105.	11.1	124
5	Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes. Organic Electronics, 2010, 11, 1864-1869.	1.4	113
6	Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure. Applied Physics Letters, 2010, 97, .	1.5	92
7	Tuning of the Electronic Characteristics of ZnO Nanowire Field Effect Transistors by Proton Irradiation. ACS Nano, 2010, 4, 811-818.	7.3	62
8	Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps. Nanotechnology, 2011, 22, 205204.	1.3	52
9	Thermal stability of multilayer graphene films synthesized by chemical vapor deposition and stained by metallic impurities. Nanotechnology, 2012, 23, 075702.	1.3	52
10	Enhanced Performance of MoS ₂ Photodetectors by Inserting an ALDâ€Processed TiO ₂ Interlayer. Small, 2018, 14, 1703176.	5.2	51
11	Au nanoparticle-decorated graphene electrodes for GaN-based optoelectronic devices. Applied Physics Letters, 2012, 101, .	1.5	48
12	Modulation of Synaptic Plasticity Mimicked in Al Nanoparticleâ€Embedded IGZO Synaptic Transistor. Advanced Electronic Materials, 2020, 6, 1901072.	2.6	47
13	Diameter-Engineered SnO ₂ Nanowires over Contact-Printed Gold Nanodots Using Size-Controlled Carbon Nanopost Array Stamps. ACS Nano, 2010, 4, 1829-1836.	7.3	46
14	Nonvolatile Memory Functionality of ZnO Nanowire Transistors Controlled by Mobile Protons. ACS Nano, 2011, 5, 558-564.	7.3	40
15	Characteristics of a pressure sensitive touch sensor using a piezoelectric PVDF-TrFE/MoS ₂ stack. Nanotechnology, 2013, 24, 475501.	1.3	39
16	Low Power MoS ₂ /Nb ₂ O ₅ Memtransistor Device with Highly Reliable Heterosynaptic Plasticity. Advanced Functional Materials, 2021, 31, 2104174.	7.8	33
17	Logic inverters composed of controlled depletion-mode and enhancement-mode ZnO nanowire transistors. Applied Physics Letters, 2009, 94, 173118.	1.5	32
18	Complementary Unipolar WS ₂ Fieldâ€Effect Transistors Using Fermiâ€Level Depinning Layers. Advanced Electronic Materials, 2016, 2, 1500278.	2.6	28

Woojin Park

#	Article	IF	CITATIONS
19	Electrical properties of ZnO nanowire field effect transistors with varying high-kâ€^Al2O3 dielectric thickness. Journal of Applied Physics, 2010, 107, .	1.1	27
20	A study of graphene films synthesized on nickel substrates: existence and origin of small-base-area peaks. Nanotechnology, 2011, 22, 045706.	1.3	27
21	Novel Exfoliation of High-Quality 2H-MoS2 Nanoflakes for Solution-Processed Photodetector. Nanomaterials, 2020, 10, 1045.	1.9	26
22	Contact Resistance Reduction of WS ₂ FETs Using High-Pressure Hydrogen Annealing. IEEE Journal of the Electron Devices Society, 2018, 6, 164-168.	1.2	25
23	Transient drain current characteristics of ZnO nanowire field effect transistors. Applied Physics Letters, 2009, 95, 123101.	1.5	24
24	Enhanced characteristics of pentacene field-effect transistors with graphene electrodes and substrate treatments. Applied Physics Letters, 2011, 99, 083306.	1.5	24
25	Tuning of operation mode of ZnO nanowire field effect transistors by solvent-driven surface treatment. Nanotechnology, 2009, 20, 475702.	1.3	21
26	Highly sensitive wide bandwidth photodetectors using chemical vapor deposited graphene. Applied Physics Letters, 2014, 104, .	1.5	20
27	Al2O3-Induced Sub-Gap Doping on the IGZO Channel for the Detection of Infrared Light. ACS Applied Electronic Materials, 2020, 2, 1478-1483.	2.0	19
28	Highly Stable and Ultrafast Hydrogen Gas Sensor Based on 15 nm Nanogaps Switching in a Palladium–Gold Nanoribbons Array. Advanced Materials Interfaces, 2019, 6, 1801442.	1.9	18
29	Enhanced Photoresponse of WS ₂ Photodetectors through Interfacial Defect Engineering Using a TiO ₂ Interlayer. ACS Applied Electronic Materials, 2020, 2, 838-845.	2.0	17
30	Investigation of threshold voltage instability induced by gate bias stress in ZnO nanowire field effect transistors. Nanotechnology, 2012, 23, 485201.	1.3	14
31	Reduction of lowâ€frequency noise in multilayer MoS ₂ FETs using a Fermiâ€ŀevel depinning layer. Physica Status Solidi - Rapid Research Letters, 2016, 10, 634-638.	1.2	14
32	Stable MoS ₂ Fieldâ€Effect Transistors Using TiO ₂ Interfacial Layer at Metal/MoS ₂ Contact. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700534.	0.8	14
33	Patterned catalyst arrays of Pd/SnO ₂ core–shell nanowires for electrooxidations of biomass-derived alcohols. Journal of Materials Chemistry A, 2015, 3, 13492-13499.	5.2	13
34	In-Line Tunnel Field Effect Transistor: Drive Current Improvement. IEEE Journal of the Electron Devices Society, 2018, 6, 721-725.	1.2	11
35	Improvement of the Bias Stress Stability in 2D MoS2 and WS2 Transistors with a TiO2 Interfacial Layer. Nanomaterials, 2019, 9, 1155.	1.9	11
36	Artificial 2D van der Waals Synapse Devices via Interfacial Engineering for Neuromorphic Systems. Nanomaterials, 2020, 10, 88.	1.9	11

Woojin Park

#	Article	IF	CITATIONS
37	Dual-Terminal Stimulated Heterosynaptic Plasticity of IGZO Memtransistor with Al ₂ O ₃ /TiO ₂ Double-Oxide Structure. ACS Applied Electronic Materials, 2022, 4, 2923-2932.	2.0	10
38	Characteristics of light-induced electron transport from P3HT to ZnO-nanowire field-effect transistors. Applied Physics Letters, 2013, 103, 223305.	1.5	9
39	One-step H ₂ S reactive sputtering for 2D MoS ₂ /Si heterojunction photodetector. Nanotechnology, 2020, 31, 225205.	1.3	9
40	Contact resistance reduction of ZnO thin film transistors (TFTs) with saw-shaped electrode. Nanotechnology, 2018, 29, 325202.	1.3	7
41	UV photoconductivity characteristics of ZnO nanowire field effect transistor treated by proton irradiation. Thin Solid Films, 2012, 520, 3624-3628.	0.8	4
42	Unveiling the Role of Al ₂ O ₃ Interlayer in Indium–Gallium–Zinc–Oxide Transistors. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000621.	0.8	4
43	Characterization on Improved Effective Mobility of Pentacene Organic Field-Effect Transistors Using Graphene Electrodes. Japanese Journal of Applied Physics, 2012, 51, 02BK09.	0.8	3
44	Proton Irradiation-Induced Electrostatic Modulation in ZnO Nanowire Field-Effect Transistors With Bilayer Gate Dielectric. IEEE Nanotechnology Magazine, 2012, 11, 918-923.	1.1	3
45	Characterization of ZnO Nanowire Field Effect Transistors by Fast Hydrogen Peroxide Solution Treatment. Japanese Journal of Applied Physics, 2012, 51, 035001.	0.8	2
46	Photonics: Enhanced Performance of MoS ₂ Photodetectors by Inserting an ALDâ€Processed TiO ₂ Interlayer (Small 5/2018). Small, 2018, 14, 1870022.	5.2	2
47	Facile fabrication of ZnO nanowire memory device based on chemically-treated surface defects. Nanotechnology, 2019, 30, 155201.	1.3	2
48	Characterization on Improved Effective Mobility of Pentacene Organic Field-Effect Transistors Using Graphene Electrodes. Japanese Journal of Applied Physics, 2012, 51, 02BK09.	0.8	2
49	Large-Area, Transparent And Conductive Graphene Electrode For Bulk-Heterojunction Photovoltaic Devices. , 2011, , .		0
50	Characterization of ZnO Nanowire Field Effect Transistors by Fast Hydrogen Peroxide Solution Treatment. Japanese Journal of Applied Physics, 2012, 51, 035001.	0.8	0