Ai-guo Wu

List of Publications by Citations

Source: https://exaly.com/author-pdf/1053376/ai-guo-wu-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 274
papers
 11,500
citations
 54
h-index
 97
g-index

 301
ext. papers
 13,936
ext. citations
 8
avg, IF
 6.75
L-index

#	Paper	IF	Citations
274	Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5360-3	16.4	1181
273	A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network. <i>Analytical Chemistry</i> , 2002 , 74, 2217-23	7.8	579
272	Truly Fluorescent Excitation-Dependent Carbon Dots and Their Applications in Multicolor Cellular Imaging and Multidimensional Sensing. <i>Advanced Materials</i> , 2015 , 27, 7782-7	24	455
271	Toward High-Efficient Red Emissive Carbon Dots: Facile Preparation, Unique Properties, and Applications as Multifunctional Theranostic Agents. <i>Chemistry of Materials</i> , 2016 , 28, 8659-8668	9.6	340
270	Emerging Strategies of Cancer Therapy Based on Ferroptosis. <i>Advanced Materials</i> , 2018 , 30, e1704007	24	272
269	Fenton-Reaction-Acceleratable Magnetic Nanoparticles for Ferroptosis Therapy of Orthotopic Brain Tumors. <i>ACS Nano</i> , 2018 , 12, 11355-11365	16.7	256
268	Current detection technologies for circulating tumor cells. Chemical Society Reviews, 2017, 46, 2038-20	56 8.5	242
267	A Near Infrared Light Triggered Hydrogenated Black TiO2 for Cancer Photothermal Therapy. <i>Advanced Healthcare Materials</i> , 2015 , 4, 1526-36	10.1	213
266	Iron Oxide Nanoparticle Based Contrast Agents for Magnetic Resonance Imaging. <i>Molecular Pharmaceutics</i> , 2017 , 14, 1352-1364	5.6	178
265	Multifunctional Theranostic Nanoparticles Based on Exceedingly Small Magnetic Iron Oxide Nanoparticles for T-Weighted Magnetic Resonance Imaging and Chemotherapy. <i>ACS Nano</i> , 2017 , 11, 10992-11004	16.7	161
264	Nanozymes-Engineered Metal-Organic Frameworks for Catalytic Cascades-Enhanced Synergistic Cancer Therapy. <i>Nano Letters</i> , 2019 , 19, 5674-5682	11.5	146
263	Doxorubicin-loaded NaYF4:Yb/Tm-TiO2 inorganic photosensitizers for NIR-triggered photodynamic therapy and enhanced chemotherapy in drug-resistant breast cancers. <i>Biomaterials</i> , 2015 , 57, 93-106	15.6	138
262	Nanoparticles for applications in cellular imaging. <i>Nanoscale Research Letters</i> , 2007 , 2, 430-41	5	136
261	Enhanced fluorescence imaging guided photodynamic therapy of sinoporphyrin sodium loaded graphene oxide. <i>Biomaterials</i> , 2015 , 42, 94-102	15.6	134
260	Endocytosis of titanium dioxide nanoparticles in prostate cancer PC-3M cells. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2011 , 7, 123-30	6	120
259	Multifunctional Fe3O4-TiO2 nanocomposites for magnetic resonance imaging and potential photodynamic therapy. <i>Nanoscale</i> , 2013 , 5, 2107-13	7.7	111
258	Ce6-Modified Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power. <i>ACS Applied Materials & Diterfaces</i> , 2019 , 11, 5791-5803	9.5	107

(2016-2017)

257	Designed graphene-peptide nanocomposites for biosensor applications: A review. <i>Analytica Chimica Acta</i> , 2017 , 985, 24-40	6.6	106
256	Unveiling the adsorption mechanism of zeolitic imidazolate framework-8 with high efficiency for removal of copper ions from aqueous solutions. <i>Dalton Transactions</i> , 2016 , 45, 12653-60	4.3	105
255	Inorganic photosensitizer coupled Gd-based upconversion luminescent nanocomposites for in vivo magnetic resonance imaging and near-infrared-responsive photodynamic therapy in cancers. <i>Biomaterials</i> , 2015 , 44, 82-90	15.6	103
254	Improved SERS Nanoparticles for Direct Detection of Circulating Tumor Cells in the Blood. <i>ACS Applied Materials & Direct Detection of Circulating Tumor Cells in the Blood. ACS Applied Materials & Direct Detection of Circulating Tumor Cells in the Blood. <i>ACS Applied Materials & Direct Detection of Circulating Tumor Cells in the Blood. ACS Applied Materials & Direct Detection of Circulating Tumor Cells in the Blood. <i>ACS Applied Materials & Direct Detection of Circulating Tumor Cells in the Blood. ACS Applied Materials & Direct Detection of Circulating Tumor Cells in the Blood. <i>ACS Applied Materials & Direct Detection of Circulating Tumor Cells in the Blood. ACS Applied Materials & Direct Detection Detection of Circulating Tumor Cells in the Blood. <i>ACS Applied Materials & Direct Detection Dete</i></i></i></i></i>	9.5	101
253	Tumor Microenvironment Stimuli-Responsive Fluorescence Imaging and Synergistic Cancer Therapy by Carbon-Dot-Cu Nanoassemblies. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 21041-21048	16.4	97
252	Recent Advances in Nanoporous Membranes for Water Purification. <i>Nanomaterials</i> , 2018 , 8,	5.4	91
251	DNA folding and melting observed in real time redefine the energy landscape. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 712-6	11.5	91
250	Improved SERS-Active Nanoparticles with Various Shapes for CTC Detection without Enrichment Process with Supersensitivity and High Specificity. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 1992	.8 <u>-3</u> 8	89
249	Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications. <i>Nanoscale</i> , 2019 , 11, 4147-4182	7.7	88
248	Nanocarriers enhance Doxorubicin uptake in drug-resistant ovarian cancer cells. <i>Cancer Research</i> , 2012 , 72, 769-78	10.1	88
247	Dual ATP and pH responsive ZIF-90 nanosystem with favorable biocompatibility and facile post-modification improves therapeutic outcomes of triple negative breast cancer in vivo. <i>Biomaterials</i> , 2019 , 197, 41-50	15.6	87
246	Silica-coated super-paramagnetic iron oxide nanoparticles (SPIONPs): a new type contrast agent of T magnetic resonance imaging (MRI). <i>Journal of Materials Chemistry B</i> , 2015 , 3, 5172-5181	7.3	86
245	Electroactive and biocompatible hydroxyl- functionalized graphene by ball milling. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8367		82
244	Labeling TiO2 nanoparticles with dyes for optical fluorescence microscopy and determination of TiO2-DNA nanoconjugate stability. <i>Small</i> , 2009 , 5, 1318-25	11	81
243	Selective colorimetric detection of Cr(iii) and Cr(vi) using gallic acid capped gold nanoparticles. <i>Dalton Transactions</i> , 2016 , 45, 8347-54	4.3	80
242	Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances. <i>Biomaterials Science</i> , 2018 , 6, 708-725	7.4	77
241	High-Performance Colorimetric Detection of Hg2+ Based on Triangular Silver Nanoprisms. <i>ACS Sensors</i> , 2016 , 1, 521-527	9.2	76
240	A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles. <i>ACS Applied Materials & District Applied Materials & District Academy (Nature of Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles. <i>ACS Applied Materials & District Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles. ACS Applied Materials & District Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles. <i>ACS Applied Materials & District Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles. ACS Applied Materials & District Colorimetric Colorimetri</i></i></i>	9.5	76

239	A gold nanoparticle-based immunochromatographic assay: the influence of nanoparticulate size. <i>Analyst, The</i> , 2012 , 137, 1174-81	5	76
238	Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. <i>PLoS ONE</i> , 2013 , 8, e70618	3.7	76
237	Bioconjugation of Gold Nanobipyramids for SERS Detection and Targeted Photothermal Therapy in Breast Cancer. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 608-618	5.5	73
236	808 hm-excited upconversion nanoprobes with low heating effect for targeted magnetic resonance imaging and high-efficacy photodynamic therapy in HER2-overexpressed breast cancer. <i>Biomaterials</i> , 2016 , 103, 116-127	15.6	72
235	In vivo targeted magnetic resonance imaging and visualized photodynamic therapy in deep-tissue cancers using folic acid-functionalized superparamagnetic-upconversion nanocomposites. <i>Nanoscale</i> , 2015 , 7, 8946-54	7.7	70
234	The design and biomedical applications of self-assembled two-dimensional organic biomaterials. <i>Chemical Society Reviews</i> , 2019 , 48, 5564-5595	58.5	70
233	Brushing, a simple way to fabricate SERS active paper substrates. <i>Analytical Methods</i> , 2014 , 6, 2066-207	13.2	68
232	"Red-to-blue" colorimetric detection of cysteine via anti-etching of silver nanoprisms. <i>Nanoscale</i> , 2014 , 6, 10631-7	7.7	65
231	Exploring a new SPION-based MRI contrast agent with excellent water-dispersibility, high specificity to cancer cells and strong MR imaging efficacy. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 126, 44-9	6	65
230	Graphene-based aptasensors: from molecule-interface interactions to sensor design and biomedical diagnostics. <i>Analyst, The</i> , 2018 , 143, 1526-1543	5	64
229	Colorimetric detection of Cr3+ using tripolyphosphate modified gold nanoparticles in aqueous solutions. <i>Analytical Methods</i> , 2012 , 4, 1259	3.2	64
228	Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 2631-6	3.6	62
227	Dotted Core-Shell Nanoparticles for T -Weighted MRI of Tumors. <i>Advanced Materials</i> , 2018 , 30, e180316	5 3 4	62
226	Modifying Fe3O4 microspheres with rhodamine hydrazide for selective detection and removal of Hg2+ ion in water. <i>Journal of Hazardous Materials</i> , 2013 , 244-245, 621-7	12.8	61
225	Raman Reporter-Coupled Ag(core)@Au(shell) Nanostars for in Vivo Improved Surface Enhanced Raman Scattering Imaging and Near-infrared-Triggered Photothermal Therapy in Breast Cancers. <i>ACS Applied Materials & Distriction (Control of the Control of</i>	9.5	59
224	Applications of Iron Oxide-Based Magnetic Nanoparticles in the Diagnosis and Treatment of Bacterial Infections. <i>Frontiers in Bioengineering and Biotechnology</i> , 2019 , 7, 141	5.8	58
223	A new simple and reliable Hg2+ detection system based on anti-aggregation of unmodified gold nanoparticles in the presence of O-phenylenediamine. <i>Sensors and Actuators B: Chemical</i> , 2014 , 200, 140	o ⁸ 146	58
222	Biomass-Derived Porous Carbonaceous Aerogel as Sorbent for Oil-Spill Remediation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 32862-32868	9.5	57

(2008-2018)

221	Porous Gold Nanoshells on Functional NH -MOFs: Facile Synthesis and Designable Platforms for Cancer Multiple Therapy. <i>Small</i> , 2018 , 14, e1801851	11	56	
220	Colorimetric response of dithizone product and hexadecyl trimethyl ammonium bromide modified gold nanoparticle dispersion to 10 types of heavy metal ions: understanding the involved molecules from experiment to simulation. <i>Langmuir</i> , 2013 , 29, 7591-9	4	53	
219	Biocompatible composite nanoparticles with large longitudinal relaxivity for targeted imaging and early diagnosis of cancer. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 3419-3428	7.3	53	
218	A new rapid colorimetric detection method of Mn2+ based on tripolyphosphate modified silver nanoparticles. <i>Sensors and Actuators B: Chemical</i> , 2013 , 181, 288-293	8.5	52	
217	Stability enhanced polyelectrolyte-coated gold nanorod-photosensitizer complexes for high/low power density photodynamic therapy. <i>Biomaterials</i> , 2014 , 35, 7058-67	15.6	50	
216	Multifunctional photosensitizer-conjugated coreBhell Fe3O4@NaYF4:Yb/Er nanocomplexes and their applications in T2-weighted magnetic resonance/upconversion luminescence imaging and photodynamic therapy of cancer cells. <i>RSC Advances</i> , 2013 , 3, 13915	3.7	50	
215	A one-step colorimetric method of analysis detection of Hg2+ based on an in situ formation of Au@HgS core-shell structures. <i>Analyst, The</i> , 2011 , 136, 2825-30	5	50	
214	A colorimetric assay method for Co2+ based on thioglycolic acid functionalized hexadecyl trimethyl ammonium bromide modified Au nanoparticles (NPs). <i>Nanoscale</i> , 2011 , 3, 2150-4	7.7	50	
213	ZD2-Engineered Gold Nanostar@Metal-Organic Framework Nanoprobes for T -Weighted Magnetic Resonance Imaging and Photothermal Therapy Specifically Toward Triple-Negative Breast Cancer. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1801144	10.1	49	
212	Macroporous calcium alginate aerogel as sorbent for Pb2+ removal from water media. <i>Journal of Environmental Chemical Engineering</i> , 2016 , 4, 3185-3192	6.8	48	
211	A colorimetric sensor based on citrate-stabilized AuNPs for rapid pesticide residue detection of terbuthylazine and dimethoate. <i>Sensors and Actuators B: Chemical</i> , 2018 , 255, 3093-3101	8.5	47	
210	A rapid colorimetric detection method of trace Cr (VI) based on the redox etching of Ag(core)-Au(shell) nanoparticles at room temperature. <i>Talanta</i> , 2012 , 101, 122-7	6.2	47	
209	A simple visual and highly selective colorimetric detection of Hg2+ based on gold nanoparticles modified by 8-hydroxyquinolines and oxalates. <i>Chemical Communications</i> , 2014 , 50, 6447-50	5.8	46	
208	Exploring a new rapid colorimetric detection method of Cu2+ with high sensitivity and selectivity. <i>Sensors and Actuators B: Chemical</i> , 2013 , 176, 906-912	8.5	46	
207	A novel Trojan-horse targeting strategy to reduce the non-specific uptake of nanocarriers by non-cancerous cells. <i>Biomaterials</i> , 2015 , 70, 1-11	15.6	43	
206	Colorimetric detection of copper and efficient removal of heavy metal ions from water by diamine-functionalized SBA-15. <i>Dalton Transactions</i> , 2014 , 43, 8461-8	4.3	43	
205	Acute toxicity of nickel nanoparticles in rats after intravenous injection. <i>International Journal of Nanomedicine</i> , 2014 , 9, 1393-402	7.3	42	
204	Gadolinium-conjugated TiO2-DNA oligonucleotide nanoconjugates show prolonged intracellular retention period and T1-weighted contrast enhancement in magnetic resonance images. Nanomedicine: Nanotechnology, Biology, and Medicine, 2008, 4, 201-7	6	42	

203	A colorimetric nitrite detection system with excellent selectivity and high sensitivity based on Ag@Au nanoparticles. <i>Analyst, The</i> , 2015 , 140, 1076-81	5	41
202	pH-Responsive metal-organic framework encapsulated gold nanoclusters with modulated release to enhance photodynamic therapy/chemotherapy in breast cancer. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 1739-1747	7.3	41
201	The colorimetric detection of Pb2+ by using sodium thiosulfate and hexadecyl trimethyl ammonium bromide modified gold nanoparticles. <i>Dalton Transactions</i> , 2013 , 42, 5485-90	4.3	41
200	Enhanced doxorubicin transport to multidrug resistant breast cancer cells via TiO2 nanocarriers. <i>RSC Advances</i> , 2013 , 3, 20855	3.7	41
199	A Supersensitive CTC Analysis System Based on Triangular Silver Nanoprisms and SPION with Function of Capture, Enrichment, Detection, and Release. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 1073-1082	5.5	39
198	Gd-based upconversion nanocarriers with yolk-shell structure for dual-modal imaging and enhanced chemotherapy to overcome multidrug resistance in breast cancer. <i>Nanoscale</i> , 2016 , 8, 878-88	7-7	39
197	Neuropeptide Y receptors: a promising target for cancer imaging and therapy. <i>International Journal of Energy Production and Management</i> , 2015 , 2, 215-9	5.3	39
196	The enhanced chemotherapeutic effects of doxorubicin loaded PEG coated TiO nanocarriers in an orthotopic breast tumor bearing mouse model. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 1518-1528	7.3	39
195	Layered bismuth oxyhalide nanomaterials for highly efficient tumor photodynamic therapy. <i>Nanoscale</i> , 2016 , 8, 12715-22	7.7	38
194	BIOMEDICAL APPLICATIONS OF MAGNETIC NANOPARTICLES. <i>Nano</i> , 2010 , 05, 245-270	1.1	38
193	Engineered nano-immunopotentiators efficiently promote cancer immunotherapy for inhibiting and preventing lung metastasis of melanoma. <i>Biomaterials</i> , 2019 , 223, 119464	15.6	37
192	Nanoparticle-Based Wound Dressing: Recent Progress in the Detection and Therapy of Bacterial Infections. <i>Bioconjugate Chemistry</i> , 2020 , 31, 1708-1723	6.3	37
191	High-Performance Colorimetric Detection of Thiosulfate by Using Silver Nanoparticles for Smartphone-Based Analysis. <i>ACS Sensors</i> , 2017 , 2, 1152-1159	9.2	37
190	Black TiO based core-shell nanocomposites as doxorubicin carriers for thermal imaging guided synergistic therapy of breast cancer. <i>Nanoscale</i> , 2017 , 9, 11195-11204	7.7	37
189	Electrostatic-assembly metallized nanoparticles network by DNA template. <i>Talanta</i> , 2006 , 68, 693-9	6.2	37
188	A new rapid colorimetric detection method of All+ with high sensitivity and excellent selectivity based on a new mechanism of aggregation of smaller etched silver nanoparticles. <i>Talanta</i> , 2014 , 122, 272-7	6.2	36
187	Bottom-Up Synthesis and Sensor Applications of Biomimetic Nanostructures. <i>Materials</i> , 2016 , 9,	3.5	36
186	Amplified Photoacoustic Signal and Enhanced Photothermal Conversion of Polydopamine-Coated Gold Nanobipyramids for Phototheranostics and Synergistic Chemotherapy. <i>ACS Applied Materials</i>	9.5	35

(2020-2003)

185	Preparation of Multilayer Films Containing Pt Nanoparticles on a Glassy Carbon Electrode and Application as an Electrocatalyst for Dioxygen Reduction. <i>Langmuir</i> , 2003 , 19, 5397-5401	4	35
184	Arsenene Nanodots with Selective Killing Effects and their Low-Dose Combination with Elemene for Cancer Therapy. <i>Advanced Materials</i> , 2021 , 33, e2102054	24	35
183	AFM studies of DNA structures on mica in the presence of alkaline earth metal ions. <i>Biophysical Chemistry</i> , 2003 , 104, 37-43	3.5	34
182	pH protective Y receptor ligand functionalized antiphagocytosis BPLP-WPU micelles for enhanced tumor imaging and therapy with prolonged survival time. <i>Biomaterials</i> , 2018 , 170, 70-81	15.6	33
181	Photochromic behavior and luminescent properties of novel hybrid organic[horganic film doped with Preyssler's heteropoly acid H12[EuP5W30O110] and polyvinylpyrrolidone. <i>Materials Letters</i> , 2003 , 57, 1417-1422	3.3	33
180	PCN-Fe(III)-PTX nanoparticles for MRI guided high efficiency chemo-photodynamic therapy in pancreatic cancer through alleviating tumor hypoxia. <i>Nano Research</i> , 2020 , 13, 273-281	10	33
179	Three dimensional plasmonic assemblies of AuNPs with an overall size of sub-200 nm for chemo-photothermal synergistic therapy of breast cancer. <i>Nanoscale</i> , 2016 , 8, 18682-18692	7.7	33
178	One-pot synthesis of hollow PDA@DOX nanoparticles for ultrasound imaging and chemo-thermal therapy in breast cancer. <i>Nanoscale</i> , 2019 , 11, 21759-21766	7.7	32
177	A rapid and sensitive colorimetric assay method for Co2+ based on the modified Au nanoparticles (NPs): understanding the involved interactions from experiments and simulations. <i>Talanta</i> , 2012 , 94, 271-7	6.2	32
176	Synthesis of water-soluble FeOOH nanospindles and their performance for magnetic resonance imaging. <i>Applied Surface Science</i> , 2012 , 258, 2570-2575	6.7	32
175	Crystal-Amorphous Core-Shell Structure Synergistically Enabling TiO Nanoparticles' Remarkable SERS Sensitivity for Cancer Cell Imaging. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 4204-4211	9.5	31
174	Engineered fluorescent carbon dots as promising immune adjuvants to efficiently enhance cancer immunotherapy. <i>Nanoscale</i> , 2018 , 10, 22035-22043	7.7	31
173	Near-infrared heptamethine cyanine dye-based nanoscale coordination polymers with intrinsic nucleus-targeting for low temperature photothermal therapy. <i>Nano Today</i> , 2020 , 34, 100910	17.9	30
172	Y-receptor-ligand-functionalized ultrasmall upconversion nanoparticles for tumor-targeted trimodality imaging and photodynamic therapy with low toxicity. <i>Nanoscale</i> , 2018 , 10, 17038-17052	7.7	30
171	Neuropeptide Y Y receptor-mediated biodegradable photoluminescent nanobubbles as ultrasound contrast agents for targeted breast cancer imaging. <i>Biomaterials</i> , 2017 , 116, 106-117	15.6	30
170	Methods for assessing DNA hybridization of peptide nucleic acid-titanium dioxide nanoconjugates. <i>Analytical Biochemistry</i> , 2008 , 383, 226-35	3.1	30
169	Synthesis of flake-like bismuth tungstate (Bi2WO6) for photocatalytic degradation of coomassie brilliant blue (CBB). <i>Inorganic Chemistry Communication</i> , 2017 , 86, 213-217	3.1	29
168	Small-sized gadolinium oxide based nanoparticles for high-efficiency theranostics of orthotopic glioblastoma. <i>Biomaterials</i> , 2020 , 235, 119783	15.6	29

167	Plasmid DNA network on a mica substrate investigated by atomic force microscopy. <i>Analytical Sciences</i> , 2001 , 17, 583-4	1.7	29
166	A silane-based interfacial crosslinking strategy to design PVDF membranes with versatile surface functions. <i>Journal of Membrane Science</i> , 2016 , 520, 769-778	9.6	28
165	The Transition from Metal-Based to Metal-Free Contrast Agents for Magnetic Resonance Imaging Enhancement. <i>Bioconjugate Chemistry</i> , 2019 , 30, 2264-2286	6.3	28
164	Synthesis of gold-silica core-shell nanoparticles by pulsed laser ablation in liquid and their physico-chemical properties towards photothermal cancer therapy. <i>Nanoscale</i> , 2020 , 12, 3007-3018	7.7	28
163	Manganese-Zeolitic Imidazolate Frameworks-90 with High Blood Circulation Stability for MRI-Guided Tumor Therapy. <i>Nano-Micro Letters</i> , 2019 , 11, 61	19.5	27
162	Ce6/Mn-chelated polydopamine@black-TiO nanoprobes for enhanced synergistic phototherapy and magnetic resonance imaging in 4T1 breast cancer. <i>Nanoscale</i> , 2020 , 12, 1801-1810	7.7	27
161	A facile fabrication route for binary transition metal oxide-based Janus nanoparticles for cancer theranostic applications. <i>Nano Research</i> , 2018 , 11, 5735-5750	10	27
160	Nanomaterial-based cancer immunotherapy. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 5517-5531	7.3	26
159	A Flexible Caterpillar-Like Gold Nanoparticle Assemblies with Ultrasmall Nanogaps for Enhanced Dual-Modal Imaging and Photothermal Therapy. <i>Small</i> , 2018 , 14, e1800094	11	26
158	A novel AgNPs-based colorimetric sensor for rapid detection of Cu2+ or Mn2+ via pH control. <i>RSC Advances</i> , 2015 , 5, 20595-20602	3.7	26
157	Neuropeptide Y Y1 receptors mediate [corrected] targeted delivery of anticancer drug with encapsulated nanoparticles to breast cancer cells with high selectivity and its potential for breast cancer therapy. ACS Applied Materials & amp; Interfaces, 2015, 7, 5574-82	9.5	25
156	Hollow mesoporous hydroxyapatite nanostructures; smart nanocarriers with high drug loading and controlled releasing features. <i>International Journal of Pharmaceutics</i> , 2018 , 544, 112-120	6.5	25
155	Atomic force microscope investigation of large-circle DNA molecules. <i>Analytical Biochemistry</i> , 2004 , 325, 293-300	3.1	25
154	A Ultrasensitive Near-Infrared Fluorescent Probe Reveals Pyroglutamate Aminopeptidase 1 Can Be a New Inflammatory Cytokine. <i>Advanced Science</i> , 2018 , 5, 1700664	13.6	24
153	Adsorption of boron by CA@KH-550@EPH@NMDG (CKEN) with biomass carbonaceous aerogels as substrate. <i>Journal of Hazardous Materials</i> , 2018 , 358, 10-19	12.8	24
152	The structural transition of DNA-Tris(1,10-phenanthroline) cobalt(III) complexes in ethanol-water solution. <i>Biochemical and Biophysical Research Communications</i> , 2002 , 299, 910-5	3.4	24
151	Zn Doped Ultrasmall Prussian Blue Nanotheranostic Agent for Breast Cancer Photothermal Therapy under MR Imaging Guidance. <i>Advanced Healthcare Materials</i> , 2020 , 9, e1900948	10.1	24
150	A Supersensitive Probe for Rapid Colorimetric Detection of Nickel Ion Based on a Sensing Mechanism of Anti-etching. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 6509-6516	8.3	24

149	Detection of circulating tumor cells based on improved SERS-active magnetic nanoparticles. <i>Analytical Methods</i> , 2019 , 11, 2918-2928	3.2	23	
148	Applications of inorganic nanoparticles in the diagnosis and therapy of atherosclerosis. <i>Biomaterials Science</i> , 2020 , 8, 3784-3799	7.4	23	
147	Highly efficient removal of toxic Pb2+ from wastewater by an alginatedhitosan hybrid adsorbent. Journal of Chemical Technology and Biotechnology, 2018 , 93, 2691-2700	3.5	23	
146	A novel fibroblast activation protein-targeted near-infrared fluorescent off-on probe for cancer cell detection, in vitro and in vivo imaging. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 1449-1451	7.3	23	
145	HO-Responsive Gold Nanoclusters @ Mesoporous Silica @ Manganese Dioxide Nanozyme for "Off/On" Modulation and Enhancement of Magnetic Resonance Imaging and Photodynamic Therapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 14928-14937	9.5	23	
144	Controllable synthesis of FeO nanoflowers: enhanced imaging guided cancer therapy and comparison of photothermal efficiency with black-TiO. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 3800-3	38 ⁷ 10	23	
143	Exceedingly Small Gadolinium Oxide Nanoparticles with Remarkable Relaxivities for Magnetic Resonance Imaging of Tumors. <i>Small</i> , 2019 , 15, e1903422	11	22	
142	Black TiO-based nanoprobes for T-weighted MRI-guided photothermal therapy in CD133 high expressed pancreatic cancer stem-like cells. <i>Biomaterials Science</i> , 2018 , 6, 2209-2218	7.4	22	
141	Study of methanol adsorption on mica, graphite and ITO glass by using tapping mode atomic force microscopy. <i>Applied Surface Science</i> , 2002 , 199, 67-73	6.7	22	
140	An efficient strategy for circulating tumor cell detection: surface-enhanced Raman spectroscopy. Journal of Materials Chemistry B, 2020 , 8, 3316-3326	7-3	22	
139	Low temperature-boosted high efficiency photo-induced charge transfer for remarkable SERS activity of ZnO nanosheets. <i>Chemical Science</i> , 2020 , 11, 9414-9420	9.4	22	
138	A novel hybrid nanoadsorbent for effective Hg adsorption based on zeolitic imidazolate framework (ZIF-90) assembled onto poly acrylic acid capped FeO nanoparticles and cysteine. <i>Journal of Hazardous Materials</i> , 2020 , 392, 122288	12.8	21	
137	Green chemistry synthesis of gold nanoparticles using lactic acid as a reducing agent. <i>Micro and Nano Letters</i> , 2010 , 5, 270	0.9	21	
136	Preparation of modified sodium alginate aerogel and its application in removing lead and cadmium ions in wastewater. <i>International Journal of Biological Macromolecules</i> , 2020 , 157, 687-694	7.9	21	
135	Boron-Containing Lipids and Liposomes: New Conjugates of Cholesterol with Polyhedral Boron Hydrides. <i>Chemistry - A European Journal</i> , 2020 , 26, 13832-13841	4.8	19	
134	Negatively charged metal oxide nanoparticles interact with the 20S proteasome and differentially modulate its biologic functional effects. <i>ACS Nano</i> , 2013 , 7, 7759-72	16.7	19	
133	Enhanced photocatalytic performance of CeO2IIiO2 nanocomposite for degradation of crystal violet dye and industrial waste effluent. <i>Applied Nanoscience (Switzerland)</i> , 2018 , 8, 1091-1099	3.3	18	
132	Solution growth of 3D MnO mesh comprising 1D nanofibres as a novel sensor for selective and sensitive detection of biomolecules. <i>Biosensors and Bioelectronics</i> , 2018 , 117, 852-859	11.8	18	

131	Titantium Dioxide Nanoparticles Assembled by DNA Molecules Hybridization and Loading of DNA Interacting Proteins. <i>Nano</i> , 2008 , 3, 27-36	1.1	18
130	In situ controllable synthesis of polyoxometalate nanoparticles in polyelectrolyte multilayers. Journal of Materials Chemistry, 2003 , 13, 647-649		18
129	Research progress and mechanism of nanomaterials-mediated in-situ remediation of cadmium-contaminated soil: A critical review. <i>Journal of Environmental Sciences</i> , 2021 , 104, 351-364	6.4	18
128	Ultra-small gadolinium oxide nanocrystal sensitization of non-small-cell lung cancer cells toward X-ray irradiation by promoting cytostatic autophagy. <i>International Journal of Nanomedicine</i> , 2019 , 14, 2415-2431	7.3	17
127	Microfluidic applications on circulating tumor cell isolation and biomimicking of cancer metastasis. <i>Electrophoresis</i> , 2020 , 41, 933-951	3.6	17
126	Self-assembly of lacunary Dawson type polyoxometalates and poly(allylamine hydrochloride) multilayer films: photoluminescent and electrochemical behavior. <i>Applied Surface Science</i> , 2005 , 242, 199-206	6.7	17
125	Construction and control of plasmid DNA network. <i>Analyst, The</i> , 2002 , 127, 585-7	5	17
124	Simultaneous determination of halide and thiocyanate ions by potentiometric precipitation titration and multivariate calibration. <i>Analytica Chimica Acta</i> , 1999 , 390, 117-123	6.6	17
123	Tumor Microenvironment Stimuli-Responsive Fluorescence Imaging and Synergistic Cancer Therapy by Carbon-Dottu2+ Nanoassemblies. <i>Angewandte Chemie</i> , 2020 , 132, 21227-21234	3.6	17
122	Rapid colorimetric detection of potassium ions based on crown ether modified Au NPs sensor. Sensors and Actuators B: Chemical, 2019 , 281, 783-788	8.5	17
121	Recent Advances in Superparamagnetic Iron Oxide Based Nanoprobes as Multifunctional Theranostic Agents for Breast Cancer Imaging and Therapy. <i>Current Medicinal Chemistry</i> , 2018 , 25, 3001	- 3 016	17
120	Paramagnetic and Superparamagnetic Inorganic Nanoparticles for T1-Weighted Magnetic Resonance Imaging. <i>Current Medicinal Chemistry</i> , 2018 , 25, 2970-2986	4.3	17
119	Tunable fabrication of new theranostic FeO-black TiO nanocomposites: dual wavelength stimulated synergistic imaging-guided phototherapy in cancer. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 210-223	7.3	16
118	Fabrication of anti-fouling, anti-bacterial and non-clotting PVDF membranes through one step "outside-in" interface segregation strategy. <i>Journal of Colloid and Interface Science</i> , 2018 , 517, 93-103	9.3	16
117	Removal of Ilfrom Aqueous Solutions Using a Biomass Carbonaceous Aerogel Modified with KH-560. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 7700-7708	8.3	16
116	Applications of magnetic materials separation in biological nanomedicine. <i>Electrophoresis</i> , 2019 , 40, 201	1 3. 2 02	815
115	Preparation and characterization of photoluminescent ultrathin films based on polyoxometalates. <i>Materials Chemistry and Physics</i> , 2003 , 77, 484-488	4.4	15
114	Hsp90 inhibitor-loaded IR780 micelles for mitochondria-targeted mild-temperature photothermal therapy in xenograft models of human breast cancer. <i>Cancer Letters</i> , 2021 , 500, 41-50	9.9	15

113	A ZIF-90 nanoplatform loaded with an enzyme-responsive organic small-molecule probe for imaging the hypoxia status of tumor cells. <i>Nanoscale</i> , 2020 , 12, 14870-14881	7.7	14
112	A facile and in situ approach to fluorescent mesoporous silica and its applications in sensing and bioimaging. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9625-9630	7.1	14
111	Direct patterning of rhodamine 6G molecules on mica by dip-pen nanolithography. <i>Applied Surface Science</i> , 2004 , 236, 18-24	6.7	14
110	Self-assembled, biocompatible and biodegradable TEMPO-conjugated nanoparticles enable folate-targeted tumor magnetic resonance imaging. <i>Applied Materials Today</i> , 2020 , 18, 100524	6.6	14
109	Navigating nMOF-mediated enzymatic reactions for catalytic tumor-specific therapy. <i>Materials Horizons</i> , 2020 , 7, 3176-3186	14.4	14
108	Mixed Metal Metal-Organic Frameworks Derived Carbon Supporting ZnFeO/C for High-Performance Magnetic Particle Imaging. <i>Nano Letters</i> , 2021 , 21, 2730-2737	11.5	14
107	Cancer cell detection and imaging: MRI-SERS bimodal splat-shaped Fe3O4/Au nanocomposites. <i>Chinese Chemical Letters</i> , 2019 , 30, 87-89	8.1	14
106	Detection of herbicide glyphosates based on an anti-aggregation mechanism by using unmodified gold nanoparticles in the presence of Pb2+. <i>Analytical Methods</i> , 2017 , 9, 2890-2896	3.2	13
105	Perylene Diimide Oligomer Nanoparticles with Ultrahigh Photothermal Conversion Efficiency for Cancer Theranostics <i>ACS Applied Bio Materials</i> , 2020 , 3, 1607-1615	4.1	13
104	Rapid and sensitive colorimetric sensing of the insecticide pymetrozine using melamine-modified gold nanoparticles. <i>Analytical Methods</i> , 2018 , 10, 417-421	3.2	13
103	Near-infrared Light Responsive Upconversion Nanoparticles for Imaging, Drug Delivery and Therapy of Cancers. <i>Current Nanoscience</i> , 2015 , 12, 18-32	1.4	13
102	A relocated technique of atomic force microscopy (AFM) samples and its application in molecular biology. <i>Ultramicroscopy</i> , 2002 , 92, 201-7	3.1	13
101	Metal-Free Organo-Theranostic Nanosystem with High Nitroxide Stability and Loading for Image-Guided Targeted Tumor Therapy. <i>ACS Nano</i> , 2021 , 15, 3079-3097	16.7	13
100	From mouse to mouse-ear cress: Nanomaterials as vehicles in plant biotechnology. <i>Exploration</i> , 2021 , 1, 9-20		13
99	Effect of elasticity on the phagocytosis of micro/nanoparticles. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 2381-2392	7.3	12
98	Precisely Tuning the Contrast Properties of ZnxFe3IIO4 Nanoparticles in Magnetic Resonance Imaging by Controlling Their Doping Content and Size. <i>Chemistry of Materials</i> , 2019 , 31, 7255-7264	9.6	12
97	Colorimetric detection of Ba, Cd and Pb based on a multifunctionalized Au NP sensor. <i>Analyst, The</i> , 2019 , 144, 5081-5089	5	12
96	Improved double emulsion technology for fabricating autofluorescent microcapsules as novel ultrasonic/fluorescent dual-modality contrast agents. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 116, 561-7	6	12

95	FITC functionalized magnetic coreBhell Fe3O4/Ag hybrid nanoparticle for selective determination of molecular biothiols. <i>Sensors and Actuators B: Chemical</i> , 2014 , 193, 857-863	8.5	12
94	Deep Penetration of Targeted Nanobubbles Enhanced Cavitation Effect on Thrombolytic Capacity. <i>Bioconjugate Chemistry</i> , 2020 , 31, 369-374	6.3	12
93	Rational design of nanomedicine for photothermal-chemodynamic bimodal cancer therapy. <i>Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology</i> , 2021 , 13, e1682	9.2	12
92	An ultra-sensitive colorimetric sensor based on smartphone for pyrophosphate determination. <i>Sensors and Actuators B: Chemical</i> , 2021 , 329, 129066	8.5	12
91	A rapid colorimetric method for the detection of deltamethrin based on gold nanoparticles modified with 2-mercapto-6-nitrobenzothiazole. <i>Analytical Methods</i> , 2018 , 10, 1774-1780	3.2	11
90	In vitro evaluation of the toxicity and underlying molecular mechanisms of Janus Fe O -TiO nanoparticles in human liver cells. <i>Environmental Toxicology</i> , 2018 , 33, 1078-1088	4.2	11
89	Manganese-Doped Carbon Dots with Redshifted Orange Emission for Enhanced Fluorescence and Magnetic Resonance Imaging ACS Applied Bio Materials, 2021 , 4, 1969-1975	4.1	11
88	A Y receptor ligand synergized with a P-glycoprotein inhibitor improves the therapeutic efficacy of multidrug resistant breast cancer. <i>Biomaterials Science</i> , 2019 , 7, 4748-4757	7.4	10
87	Colorimetric detection of paraquat in aqueous and fruit juice samples based on functionalized gold nanoparticles. <i>Journal of Food Composition and Analysis</i> , 2020 , 92, 103574	4.1	10
86	Dye surface coating enables visible light activation of TiO2 nanoparticles leading to degradation of neighboring biological structures. <i>Microscopy and Microanalysis</i> , 2012 , 18, 134-42	0.5	10
85	Ce6-Conjugated and polydopamine-coated gold nanostars with enhanced photoacoustic imaging and photothermal/photodynamic therapy to inhibit lung metastasis of breast cancer. <i>Nanoscale</i> , 2020 , 12, 22173-22184	7.7	10
84	A Hybrid Organo-Nanotheranostic Platform of Superlative Biocompatibility for Near-Infrared-Triggered Fluorescence Imaging and Synergistically Enhanced Ablation of Tumors. <i>Small</i> , 2020 , 16, e2002445	11	10
83	Recent Progress in 808 nm Excited Upconversion Nanomaterials as Multifunctional Nanoprobes for Visualized Theranostics in Cancers. <i>Current Medicinal Chemistry</i> , 2018 , 25, 2954-2969	4.3	10
82	Ten-Gram-Scale Facile Synthesis of Organogadolinium Complex Nanoparticles for Tumor Diagnosis. <i>Small</i> , 2020 , 16, e1906870	11	9
81	Simultaneous removal of thiolated membrane proteins resulting in nanostructured lipid layers. <i>Langmuir</i> , 2006 , 22, 5213-6	4	9
80	Preparation, characterization and luminescence properties of ultrathin films containing polyoxometalates. <i>Materials Letters</i> , 2002 , 54, 452-457	3.3	9
79	Research advances in integrated theranostic probes for tumor fluorescence visualization and treatment. <i>Nanoscale</i> , 2020 , 12, 24311-24330	7.7	9
78	Radiosensitizing Effect of Gadolinium Oxide Nanocrystals in NSCLC Cells Under Carbon Ion Irradiation. <i>Nanoscale Research Letters</i> , 2019 , 14, 328	5	9

(2021-2018)

77	Y receptor ligand-based nanomicelle as a novel nanoprobe for glioma-targeted imaging and therapy. <i>Nanoscale</i> , 2018 , 10, 5845-5851	7.7	8
76	Investigations on the elasticity of functional gold nanoparticles using single-molecule force spectroscopy. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 2960-2971	7.3	8
<i>75</i>	A novel non-enzymatic hydrolytic probe for dipeptidyl peptidase IV specific recognition and imaging. <i>Chemical Communications</i> , 2018 , 54, 8773-8776	5.8	8
74	Synthesis and Characterization of Fe(10)BO3/Fe3O4/SiO2 and GdFeO3/Fe3O4/SiO2: Nanocomposites of Biofunctional Materials. <i>ChemistryOpen</i> , 2013 , 2, 88-92	2.3	8
73	Stable multilayer films based on photoinduced interaction between polyoxometalates and diazo resin. <i>Materials Letters</i> , 2004 , 58, 3441-3446	3.3	8
72	DNA network structures on various solid substrates investigated by atomic force microscopy. <i>Analytical Sciences</i> , 2004 , 20, 1083-6	1.7	8
71	Retinoic Acid-Loaded Dendritic Polyglycerol-Conjugated Gold Nanostars for Targeted Photothermal Therapy in Breast Cancer Stem Cells. <i>ACS Nano</i> , 2021 , 15, 15069-15084	16.7	8
70	Facile synthesis of Au@MnO magneto-plasmonic nanoflowers for -weighted magnetic resonance imaging and photothermal therapy of cancer. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 8356-8367	7.3	7
69	Black titanium dioxide@manganese dioxide for glutathione-responsive MR imaging and enhanced photothermal therapy. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 314-321	7.3	7
68	An intelligent T-T switchable MRI contrast agent for the non-invasive identification of vulnerable atherosclerotic plaques. <i>Nanoscale</i> , 2021 , 13, 6461-6474	7.7	7
67	A pH-sensitive polymer based precise tumor targeting strategy with reduced uptake of nanoparticles by non-cancerous cells. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 5983-5991	7.3	6
66	Toxicity of TiO2 Nanoparticles 2020 , 67-103		6
65	Mitochondria-targeting zeolitic imidazole frameworks to overcome platinum-resistant ovarian cancer. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 189, 110837	6	6
64	ortho-Phenylenediamine: an effective spacer to build highly magnetic Fe3O4/Au nanocomposites. <i>ChemPhysChem</i> , 2012 , 13, 4142-7	3.2	6
63	Nanoscale structures of circle - MgCl2 constructed by plasmid DNA templates. <i>Superlattices and Microstructures</i> , 2005 , 37, 151-161	2.8	6
62	Tandem post-synthetic modification of a zeolitic imidazolate framework for CXCR4-overexpressed esophageal squamous cell cancer imaging and therapy. <i>Nanoscale</i> , 2020 , 12, 12779-12789	7.7	5
61	Polypyrrole-based nanotheranostic agent for MRI guided photothermal-chemodynamic synergistic cancer therapy. <i>Nanoscale</i> , 2021 , 13, 19085-19097	7.7	5
60	Supra-Carbon Dots Formed by Fe-Driven Assembly for Enhanced Tumor-Specific Photo-Mediated and Chemodynamic Synergistic Therapy ACS Applied Bio Materials, 2021, 4, 2759-2768	4.1	5

59	Biosafety evaluation of Janus FeO-TiO nanoparticles in Sprague Dawley rats after intravenous injection. <i>International Journal of Nanomedicine</i> , 2018 , 13, 6987-7001	7-3	5
58	Arsenene Nanodots with Selective Killing Effects and their Low-Dose Combination with Œlemene for Cancer Therapy (Adv. Mater. 37/2021). <i>Advanced Materials</i> , 2021 , 33, 2170292	24	5
57	Synthesis of uniform and stable silver nanoparticles by a gold seed-mediated growth approach in a buffer system. <i>Journal of Experimental Nanoscience</i> , 2014 , 9, 382-390	1.9	4
56	Fabrication and Characterization of DNA/QPVP-Os Redox-Active Multilayer Film. <i>Electroanalysis</i> , 2004 , 16, 1931-1937	3	4
55	Intelligent Pore Switch of Hollow Mesoporous Organosilica Nanoparticles for High Contrast Magnetic Resonance Imaging and Tumor-Specific Chemotherapy. <i>Nano Letters</i> , 2021 , 21, 9551-9559	11.5	4
54	Public-Health-Driven Microfluidic Technologies: From Separation to Detection. <i>Micromachines</i> , 2021 , 12,	3.3	4
53	Pressure-induced amorphous zeolitic imidazole frameworks with reduced toxicity and increased tumor accumulation improves therapeutic efficacy. <i>Bioactive Materials</i> , 2021 , 6, 740-748	16.7	4
52	Fluorescent carbon dots with excellent moisture retention capability for moisturizing lipstick. Journal of Nanobiotechnology, 2021 , 19, 299	9.4	4
51	TiO-based Surface-Enhanced Raman Scattering bio-probe for efficient circulating tumor cell detection on microfilter <i>Biosensors and Bioelectronics</i> , 2022 , 210, 114305	11.8	4
50	Active targeting nano-scale bubbles enhanced ultrasound cavitation chemotherapy in Y receptor-overexpressed breast cancer. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 6837-6844	7.3	3
49	Transduction Process-Based Classification of Biosensors 2020 , 23-44		3
48	Cancer Therapy: Emerging Strategies of Cancer Therapy Based on Ferroptosis (Adv. Mater. 12/2018). <i>Advanced Materials</i> , 2018 , 30, 1870084	24	3
47	Dendritic Polyglycerol-Conjugated Gold Nanostars for Metabolism Inhibition and Targeted Photothermal Therapy in Breast Cancer Stem Cells <i>Advanced Healthcare Materials</i> , 2022 , e2102272	10.1	3
46	Transition metal ion-doped ferrites nanoparticles for bioimaging and cancer therapy. <i>Translational Oncology</i> , 2021 , 15, 101264	4.9	3
45	Colorimetric detection of Cs+ based on the nonmorphological transition mechanism of gold nanoparticles in the presence of Prussian blue. <i>New Journal of Chemistry</i> , 2020 , 44, 2241-2246	3.6	3
44	Advances in surface-enhanced Raman scattering bioprobes for cancer imaging. <i>View</i> , 2021 , 2, 20200146	57.8	3
43	Octahedral silver oxide nanoparticles enabling remarkable SERS activity for detecting circulating tumor cells. <i>Science China Life Sciences</i> , 2021 , 1	8.5	3
42	Maltodextrin-Conjugated Gd-Based MRI Contrast Agents for Specific Diagnosis of Bacterial Infections <i>ACS Applied Bio Materials</i> , 2021 , 4, 3762-3772	4.1	3

(2021-2021)

41	Ultralight and superhydrophobic perfluorooctyltrimethoxysilane modified biomass carbonaceous aerogel for oil-spill remediation. <i>Chemical Engineering Research and Design</i> , 2021 , 174, 71-78	5.5	3
40	Inhibition of oxidative stress in vivo through enzyme-like activity of carbon dots. <i>Applied Materials Today</i> , 2021 , 25, 101178	6.6	3
39	Facile synthesis of biocompatible magnetic titania nanorods for T-magnetic resonance imaging and enhanced phototherapy of cancers. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 6623-6633	7.3	3
38	Facile synthesis of tri(octyl-decyl) amine-modified biomass carbonaceous aerogel for rapid adsorption and removal of iodine ions. <i>Chemical Engineering Research and Design</i> , 2019 , 144, 228-236	5.5	2
37	Biosensors for Swine Influenza Viruses 2020 , 311-327		2
36	Lecithin-coated gold nanoflowers (GNFs) for CT scan imaging applications and biochemical parameters; in vitro and in vivo studies. <i>Artificial Cells, Nanomedicine and Biotechnology</i> , 2018 , 46, 314-3	23 ¹	2
35	In-situ observation and relocation method of nanomaterial samples based on microscope systems. <i>Microscopy Research and Technique</i> , 2012 , 75, 138-44	2.8	2
34	Cancer Treatment: A Near Infrared Light Triggered Hydrogenated Black TiO2 for Cancer Photothermal Therapy (Adv. Healthcare Mater. 10/2015). <i>Advanced Healthcare Materials</i> , 2015 , 4, 1576-	·1 5 76	2
33	A Multimodal Nanocomposite for Biomedical Imaging. AIP Conference Proceedings, 2011, 1365, 379	О	2
32	The influence of tip performance on scanning probe lithography. <i>Applied Surface Science</i> , 2004 , 221, 402	2 <i>6</i> 4 9 7	2
31	Preparation of Pt Nanoparticles Assembled in Multilayer Films. Chemistry Letters, 2002, 31, 550-551	1.7	2
30	Black TiO nanoprobe-mediated mild phototherapy reduces intracellular lipid levels in atherosclerotic foam cells via cholesterol regulation pathways instead of apoptosis <i>Bioactive Materials</i> , 2022 , 17, 18-28	16.7	2
29	Ultrasound-Mediated Cavitation Enhances EGFR-Targeting PLGA-PEG Nano-Micelle Delivery for Triple-Negative Breast Cancer Treatment. <i>Cancers</i> , 2021 , 13,	6.6	2
28	TiO2 Nanoparticles 2020 , 1-66		1
27	Magnetic Nanomaterials for Tumor Targeting Theranostics 2016 , 55-83		1
26	Gold Nanorods for Biomedical Imaging and Therapy in Cancer. <i>Springer Series in Biomaterials Science and Engineering</i> , 2016 , 103-136	0.6	1
25	Gd2O3 nanocrystal-based autofluorescent composite nanoparticles as T1-weighted contrast agents. <i>Journal of Controlled Release</i> , 2015 , 213, e147-8	11.7	1
24	Nanoscale covalent organic frameworks: from controlled synthesis to cancer therapy. <i>Chemical Communications</i> , 2021 , 57, 12417-12435	5.8	1

23	Boosting Chemodynamic Therapy a Synergy of Hypothermal Ablation and Oxidation Resistance Reduction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 54770-54782	9.5	1
22	An intelligent tumor microenvironment responsive nanotheranostic agent for 1/2 dual-modal magnetic resonance imaging-guided and self-augmented photothermal therapy. <i>Biomaterials Science</i> , 2021 , 9, 7591-7602	7.4	1
21	ICG and Sunitinib-loaded NH2-MOFs for Folate-mediated Hepatocellular Carcinoma Dual-modal Therapy. <i>Chemical Research in Chinese Universities</i> , 2021 , 37, 967-974	2.2	1
20	Harnessing the Intriguing Properties of Magnetic Nanoparticles to Detect and Treat Bacterial Infections. <i>Magnetochemistry</i> , 2021 , 7, 112	3.1	1
19	A D-peptide ligand of neuropeptide Y receptor Y1 serves as nanocarrier traversing of the blood brain barrier and targets glioma. <i>Nano Today</i> , 2022 , 44, 101465	17.9	1
18	Antibacterial Applications of TiO 2 Nanoparticles 2020 , 105-132		О
17	Surface-Enhanced Raman Spectrum of TiO 2 Nanoparticle for Biosensing (TiO 2 Nanoparticle Served as SERS Sensing Substrate) 2020 , 133-152		0
16	Magnetic Nanohybrids for Magnetic Resonance Imaging and Phototherapy Applications. <i>Frontiers in Nanobiomedical Research</i> , 2017 , 101-149		О
15	The Neuropeptide Y Receptor Ligand-Modified Cell Membrane Promotes Targeted Photodynamic Therapy of Zeolitic Imidazolate Frameworks for Breast Cancer. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 11280-11287	6.4	О
14	Special Issue on New Materials and Techniques for Environmental Science (Implied Sciences (Switzerland), 2019 , 9, 3515	2.6	
13	Suppression of the environmental risks of lead in cropland soil using biomass ash and its modified product. <i>Nanoscale Advances</i> , 2019 , 1, 1740-1745	5.1	
12	Characterizing the luminescent properties of upconversion nanoparticles in single and densely packed state. <i>Journal of Innovative Optical Health Sciences</i> , 2019 , 12, 1841004	1.2	
11	Biosensors for Determination of Pesticides and Their Residues 2020 , 255-287		
10	Cancer Theranostics of White TiO 2 Nanomaterials 2020 , 153-183		
9	Cancer Theranostics of Black TiO 2 Nanoparticles 2020 , 185-215		
8	Neurodegenerative Disease Diagnostics and Therapy of TiO 2 -Based Nanoparticles 2020 , 217-236		
7	Magnetic Nanomedicine 2019 , 269-313		
6	Deposition of gold nanoparticles onto poly (DL-lactic acid) microbubbles using cetyltriethylammnonium bromide as a surface modification agent. <i>Micro and Nano Letters</i> , 2011 , 6, 186	5 0.9	

LIST OF PUBLICATIONS

5	SERS methods based on nanomaterials as a diagnostic tool of cancer 2020 , 189-211

- A Nanofiber-based hydrogels and aerogels **2020**, 259-276
- Neuropeptide Y Y1 receptors mediate targeted delivery nanoparticles for breast cancer therapy.

 Neuropeptides, **2016**, 55, 7-8
- Magnetic hybrid nanoparticles for environmental remediation **2021**, 591-615
- A Smart Glutathione and H2O2 Dual-Responsive Signal Inversion Magnetic Resonance Imaging
 Contrast Agent for Tumor Diagnosis. *Chinese Journal of Analytical Chemistry*, **2021**, 49, e21141-e21150