Kaikai Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10532496/publications.pdf

Version: 2024-02-01

1125271 840119 1,076 14 11 13 citations h-index g-index papers 14 14 14 1085 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	Thermal camouflage based on the phase-changing material GST. Light: Science and Applications, 2018, 7, 26.	7.7	255
2	Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phaseâ€Changing Material GST. Laser and Photonics Reviews, 2017, 11, 1700091.	4.4	180
3	Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high- <i>ε</i> ″ metals. Applied Physics Letters, 2017, 110, .	1.5	128
4	An ultra-thin colored textile with simultaneous solar and passive heating abilities. Nano Energy, 2019, 65, 103998.	8.2	103
5	Spatially Resolved Dynamically Reconfigurable Multilevel Control of Thermal Emission. Laser and Photonics Reviews, 2020, 14, 1900162.	4.4	103
6	Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films. Advanced Optical Materials, 2016, 4, 480-486.	3.6	94
7	Nearâ€Infrared Superâ€Absorbing Allâ€Dielectric Metasurface Based on Singleâ€Layer Germanium Nanostructures. Laser and Photonics Reviews, 2018, 12, 1800076.	4.4	70
8	Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material. Nanoscale, 2018, 10, 4415-4420.	2.8	51
9	Tunable narrowband mid-infrared thermal emitter with a bilayer cavity enhanced Tamm plasmon. Optics Letters, 2018, 43, 5230.	1.7	34
10	Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials. Optics Letters, 2018, 43, 1295.	1.7	32
11	Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting. Scientific Reports, 2016, 6, 29195.	1.6	14
12	Simultaneous single-peak and narrowband thermal emission enabled by hybrid metal-polar dielectric structures. Applied Physics Letters, 2019, 115, .	1.5	11
13	Narrowband Absorbers: Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films (Advanced Optical Materials 3/2016). Advanced Optical Materials, 2016, 4, 488-488.	3.6	1
14	Spatial and dynamical multi-level control over thermal emission. , 2020, , .		0