Thomas J Stohlgren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10531610/publications.pdf Version: 2024-02-01

		57758	56724
109	7,792	44	83
papers	citations	h-index	g-index
	_		_
111	111	111	7087
all docs	docs citations	times ranked	citing authors

THOMAS | STOHLOPEN

#	Article	IF	CITATIONS
1	Emergence of Cross-Scale Structural and Functional Processes in Ecosystem Science. , 2021, , 140-201.		0
2	Evolution of the Systems Ecology Paradigm in Managing Ecosystems. , 2021, , 202-244.		0
3	A modeling workflow that balances automation and human intervention to inform invasive plant management decisions at multiple spatial scales. PLoS ONE, 2020, 15, e0229253.	2.5	15
4	Finding the needle in the haystack: iterative sampling andÂmodeling for rare taxa. Journal of Insect Conservation, 2019, 23, 589-595.	1.4	7
5	The plant diversity sampling design for The National Ecological Observatory Network. Ecosphere, 2019, 10, e02603.	2.2	19
6	Severity of a mountain pine beetle outbreak across a range of stand conditions in Fraser Experimental Forest, Colorado, United States. Forest Ecology and Management, 2017, 389, 116-126.	3.2	15
7	Ecology and Space: A Case Study in Mapping Harmful Invasive Species. , 2017, , 63-81.		1
8	Biotic disturbance facilitates range shift at the trailing but not the leading edge of lodgepole pine's altitudinal distribution. Journal of Vegetation Science, 2016, 27, 780-788.	2.2	12
9	Field validation of an invasive species Maxent model. Ecological Informatics, 2016, 36, 126-134.	5.2	196
10	Integrating Remote Sensing with Species Distribution Models; Mapping Tamarisk Invasions Using the Software for Assisted Habitat Modeling (SAHM). Journal of Visualized Experiments, 2016, , .	0.3	14
11	Using High-Resolution Future Climate Scenarios to Forecast Bromus tectorum Invasion in Rocky Mountain National Park. PLoS ONE, 2015, 10, e0117893.	2.5	39
12	Network spread of invasive species and infectious diseases. Ecological Modelling, 2015, 309-310, 1-9.	2.5	6
13	Evidence of niche shift and global invasion potential of the Tawny Crazy ant, <i><scp>N</scp>ylanderia fulva</i> . Ecology and Evolution, 2015, 5, 4628-4641.	1.9	57
14	Caveats for correlative species distribution modeling. Ecological Informatics, 2015, 29, 6-15.	5.2	224
15	Citizen science contributes to our knowledge of invasive plant species distributions. Biological Invasions, 2015, 17, 2415-2427.	2.4	71
16	Scale-dependent impacts of invasive species: a reply to Chase et al . (2015). Biology Letters, 2015, 11, 20150402.	2.3	11
17	Regional distribution models with lack of proximate predictors: <scp>A</scp> fricanized honeybees expanding north. Diversity and Distributions, 2014, 20, 193-201.	4.1	19
18	No universal scale-dependent impacts of invasive species on native plant species richness. Biology Letters, 2014, 10, 20130939.	2.3	47

#	Article	IF	CITATIONS
19	Regional climate model downscaling may improve the prediction of alien plant species distributions. Frontiers of Earth Science, 2014, 8, 457-471.	2.1	8
20	The Hyper-Envelope Modeling Interface (HEMI): A Novel Approach Illustrated Through Predicting Tamarisk (Tamarix spp.) Habitat in the Western USA. Environmental Management, 2013, 52, 929-938.	2.7	3
21	Endangered Plants. , 2013, , 205-215.		4
22	Globalization Effects on Common Plant Species. , 2013, , 700-706.		14
23	Regional data refine local predictions: modeling the distribution of plant species abundance on a portion of the central plains. Environmental Monitoring and Assessment, 2012, 184, 5439-5451.	2.7	11
24	Environmental conditions associated with bat whiteâ€nose syndrome mortality in the northâ€eastern United States. Journal of Applied Ecology, 2012, 49, 680-689.	4.0	47
25	Distributional Changes and Range Predictions of Downy Brome (<i>Bromus tectorum</i>) in Rocky Mountain National Park. Invasive Plant Science and Management, 2011, 4, 173-182.	1.1	47
26	Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US. Forest Ecology and Management, 2011, 262, 307-316.	3.2	92
27	Using Maximum Entropy Modeling for Optimal Selection of Sampling Sites for Monitoring Networks. Diversity, 2011, 3, 252-261.	1.7	3
28	Improving National-Scale Invasion Maps: Tamarisk in the Western United States. Western North American Naturalist, 2011, 71, 164-175.	0.4	24
29	Widespread plant species: natives versus aliens in our changing world. Biological Invasions, 2011, 13, 1931-1944.	2.4	70
30	Federated or cached searches: Providing expected performance from multiple invasive species databases. Frontiers of Earth Science, 2011, 5, 111-119.	2.1	2
31	Habitat suitability of patch types: A case study of the Yosemite toad. Frontiers of Earth Science, 2011, 5, 217-228.	2.1	11
32	Assessing citizen science data quality: an invasive species case study. Conservation Letters, 2011, 4, 433-442.	5.7	285
33	Bounding species distribution models. Environmental Epigenetics, 2011, 57, 642-647.	1.8	35
34	Impacts of mixed severity wildfire on exotic plants in a Colorado ponderosa pine–Douglas-fir forest. Biological Invasions, 2010, 12, 2683-2695.	2.4	47
35	Improving and integrating data on invasive species collected by citizen scientists. Biological Invasions, 2010, 12, 3419-3428.	2.4	207
36	Ensemble Habitat Mapping of Invasive Plant Species. Risk Analysis, 2010, 30, 224-235.	2.7	168

#	Article	IF	CITATIONS
37	Bringing Modeling to the Masses: A Web Based System to Predict Potential Species Distributions. Future Internet, 2010, 2, 624-634.	3.8	7
38	From Points to Forecasts: Predicting Invasive Species Habitat Suitability in the Near Term. Diversity, 2010, 2, 738-767.	1.7	13
39	Forecasting Weed Distributions using Climate Data: A GIS Early Warning Tool. Invasive Plant Science and Management, 2010, 3, 365-375.	1.1	31
40	Mapping Invasive Tamarisk (Tamarix): A Comparison of Single-Scene and Time-Series Analyses of Remotely Sensed Data. Remote Sensing, 2009, 1, 519-533.	4.0	92
41	Near term climate projections for invasive species distributions. Biological Invasions, 2009, 11, 1373-1379.	2.4	63
42	Non-native plant invasions of United States National Parks. Biological Invasions, 2009, 11, 2195-2207.	2.4	78
43	Effects of spatial heterogeneity on butterfly species richness in Rocky Mountain National Park, CO, USA. Biodiversity and Conservation, 2009, 18, 739-763.	2.6	54
44	Effects of past logging and grazing on understory plant communities in a montane Colorado forest. Plant Ecology, 2009, 203, 99-109.	1.6	17
45	Temporal Management of Invasive Species. , 2009, , 103-122.		3
46	Potential habitat distribution for the freshwater diatom Didymosphenia geminata in the continental US. Frontiers in Ecology and the Environment, 2009, 7, 415-420.	4.0	155
47	Modelling invasion for a habitat generalist and a specialist plant species. Diversity and Distributions, 2008, 14, 808-817.	4.1	201
48	The myth of plant species saturation. Ecology Letters, 2008, 11, 313-322.	6.4	120
49	Vision of a Cyberinfrastructure for Nonnative, Invasive Species Management. BioScience, 2008, 58, 263-268.	4.9	26
50	MODELING ABOVEGROUND BIOMASS OF TAMARIX RAMOSISSIMA IN THE ARKANSAS RIVER BASIN OF SOUTHEASTERN COLORADO, USA. Western North American Naturalist, 2007, 67, 503-509.	0.4	13
51	RAPID ASSESSMENT OF POSTFIRE PLANT INVASIONS IN CONIFEROUS FORESTS OF THE WESTERN UNITED STATES. , 2007, 17, 1656-1665.		38
52	Assessing exotic plant species invasions and associated soil characteristics: A case study in eastern Rocky Mountain National Park, Colorado, USA, using the pixel nested plot design. Applied Soil Ecology, 2007, 35, 622-634.	4.3	9
53	Species–area curves indicate the importance of habitats' contributions to regional biodiversity. Ecological Indicators, 2007, 7, 387-395.	6.3	16
54	A global organism detection and monitoring system for non-native species. Ecological Informatics, 2007, 2, 177-183.	5.2	23

#	Article	IF	CITATIONS
55	Rapid plant diversity assessment using a pixel nested plot design: A case study in Beaver Meadows, Rocky Mountain National Park, Colorado, USA. Diversity and Distributions, 2007, 13, 379-388.	4.1	18
56	The Art and Science of Weed Mapping. Environmental Monitoring and Assessment, 2007, 132, 235-252.	2.7	40
57	Balancing data sharing requirements for analyses with data sensitivity. Biological Invasions, 2007, 9, 597-599.	2.4	12
58	Predicting yellow toadflax infestations in the Flat Tops Wilderness of Colorado. Biological Invasions, 2007, 9, 783-793.	2.4	14
59	SPATIAL HETEROGENEITY INFLUENCES NATIVE AND NONNATIVE PLANT SPECIES RICHNESS. Ecology, 2006, 87, 3186-3199.	3.2	196
60	PLANT SPECIES INVASIONS ALONG THE LATITUDINAL GRADIENT IN THE UNITED STATES: REPLY. Ecology, 2006, 87, 3213-3217.	3.2	3
61	Filling in the gaps: modelling native species richness and invasions using spatially incomplete data. Diversity and Distributions, 2006, 12, 511-520.	4.1	32
62	Risk Analysis for Biological Hazards: What We Need to Know about Invasive Species. Risk Analysis, 2006, 26, 163-173.	2.7	199
63	Evaluating dominance as a component of non-native species invasions. Diversity and Distributions, 2006, 12, 195-204.	4.1	22
64	Species Richness and Patterns of Invasion in Plants, Birds, and Fishes in the United States*. Biological Invasions, 2006, 8, 427-447.	2.4	130
65	Show me the numbers: what data currently exist for non-native species in the USA?. Frontiers in Ecology and the Environment, 2006, 4, 414-418.	4.0	52
66	EVALUATING PLANT INVASIONS FROM BOTH HABITAT AND SPECIES PERSPECTIVES. Western North American Naturalist, 2006, 66, 92-105.	0.4	17
67	A tamarisk habitat suitability map for the continental United States. Frontiers in Ecology and the Environment, 2006, 4, 11-17.	4.0	108
68	EFFECTS OF CONIFERS AND ELK BROWSING ON QUAKING ASPEN FORESTS IN THE CENTRAL ROCKY MOUNTAINS, USA. , 2005, 15, 1284-1295.		60
69	Life-history Habitat Matching in Invading Non-native Plant Species. Plant and Soil, 2005, 277, 7-18.	3.7	39
70	PATTERNS OF PLANT SPECIES RICHNESS, RARITY, ENDEMISM, AND UNIQUENESS IN AN ARID LANDSCAPE. , 2005, 15, 715-725.		77
71	PLANT SPECIES INVASIONS ALONG THE LATITUDINAL GRADIENT IN THE UNITED STATES. Ecology, 2005, 86, 2298-2309.	3.2	93
72	Iterative Model Development for Natural Resource Managers: A Case Example in Utah's Grand Staircase-Escalante National Monument. Annals of GIS, 2004, 10, 1-9.	3.1	1

#	Article	IF	CITATIONS
73	Aspen structure and variability in Rocky Mountain National Park, Colorado, USA. Landscape Ecology, 2003, 18, 591-603.	4.2	29
74	A nested-intensity design for surveying plant diversity. Biodiversity and Conservation, 2003, 12, 255-278.	2.6	73
75	Non-native plant invasions in managed and protected ponderosa pine/Douglas-fir forests of the Colorado Front Range. Forest Ecology and Management, 2003, 177, 515-527.	3.2	34
76	Soil characteristics and plant exotic species invasions in the Grand Staircase—Escalante National Monument, Utah, USA. Applied Soil Ecology, 2003, 22, 67-77.	4.3	79
77	The rich get richer: patterns of plant invasions in the United States. Frontiers in Ecology and the Environment, 2003, 1, 11-14.	4.0	408
78	Assessing Vulnerability to Invasion by Nonnative Plant Species at Multiple Spatial Scales. Environmental Management, 2002, 29, 566-577.	2.7	121
79	Beyond Theories of Plant Invasions: Lessons From Natural Landscapes. Comments on Theoretical Biology, 2002, 7, 355-379.	0.6	41
80	Endangered Plants. , 2001, , 465-477.		0
81	Rapid assessment of butterfly diversity in a montane landscape. Biodiversity and Conservation, 2001, 10, 1369-1386.	2.6	81
82	Patterns of Plant Invasions: A Case Example in Native Species Hotspots and Rare Habitats. Biological Invasions, 2001, 3, 37-50.	2.4	110
83	Title is missing!. Landscape Ecology, 2001, 16, 569-580.	4.2	52
84	Data Acquisition. , 2001, , 71-78.		0
85	Title is missing!. , 2000, 64, 591-605.		53
86	Monitoring shifts in plant diversity in response to climate change: a method for landscapes. Biodiversity and Conservation, 2000, 9, 65-86.	2.6	71
87	Using New Video Mapping Technology in Landscape Ecology. BioScience, 2000, 50, 529.	4.9	26
88	Aspen regeneration in the Colorado Front Range: differences at local and landscape scales. Landscape Ecology, 1999, 14, 231-237.	4.2	78
89	Effects of river level fluctuation on plant species richness, diversity, and distribution in a floodplain forest in Central Amazonia. Oecologia, 1999, 120, 582-587.	2.0	147
90	EXOTIC PLANT SPECIES INVADE HOT SPOTS OF NATIVE PLANT DIVERSITY. Ecological Monographs, 1999, 69, 25-46.	5.4	835

#	Article	IF	CITATIONS
91	HOW GRAZING AND SOIL QUALITY AFFECT NATIVE AND EXOTIC PLANT DIVERSITY IN ROCKY MOUNTAIN GRASSLANDS. , 1999, 9, 45-64.		274
92	Exotic Plant Species Invade Hot Spots of Native Plant Diversity. Ecological Monographs, 1999, 69, 25.	5.4	30
93	Riparian zones as havens for exotic plant species in the central grasslands. Plant Ecology, 1998, 138, 113-125.	1.6	235
94	Evidence that local land use practices influence regional climate, vegetation, and stream flow patterns in adjacent natural areas. Global Change Biology, 1998, 4, 495-504.	9.5	223
95	Comparison of Rangeland Vegetation Sampling Techniques in the Central Grasslands. Journal of Range Management, 1998, 51, 164.	0.3	160
96	LODGEPOLE PINE (PINUS CONTORTA) ECOTONES IN ROCKY MOUNTAIN NATIONAL PARK, COLORADO, USA. Ecology, 1997, 78, 632-641.	3.2	38
97	MULTISCALE SAMPLING OF PLANT DIVERSITY: EFFECTS OF MINIMUM MAPPING UNIT SIZE. , 1997, 7, 1064-1074.		115
98	Rapid Assessment of Plant Diversity Patterns: A Methodology for Landscapes. Environmental Monitoring and Assessment, 1997, 48, 25-43.	2.7	96
99	Landscape analysis of plant diversity. Landscape Ecology, 1997, 12, 155-170.	4.2	114
100	Attributes of reliable long-term landscape-scale studies: Malpractice insurance for landscape ecologists. Environmental Monitoring and Assessment, 1995, 36, 1-25.	2.7	45
101	Status of biotic inventories in US national parks. Biological Conservation, 1995, 71, 97-106.	4.1	86
102	Planning Long-Term Vegetation Studies at Landscape Scales. , 1995, , 209-241.		15
103	Planning Long-Term Vegetation Studies at Landscape Scales. , 1995, , 209-241.		0
104	Intra-specific competition (crowding) of giant sequoias (Sequoiadendron giganteum). Forest Ecology and Management, 1993, 59, 127-148.	3.2	11
105	Resilience of a heavily logged grove of giant sequoia (Sequoiadendron giganteum) in Kings Canyon National Park, California. Forest Ecology and Management, 1992, 54, 115-140.	3.2	32
106	Evaluating wilderness recreational opportunities: Application of an impact matrix. Environmental Management, 1992, 16, 397-403.	2.7	3
107	Litter dynamics in two Sierran mixed conifer forests. I. Litterfall and decomposition rates. Canadian Journal of Forest Research, 1988, 18, 1127-1135.	1.7	65
108	Litter dynamics in two Sierran mixed conifer forests. II. Nutrient release in decomposing leaf litter. Canadian Journal of Forest Research, 1988, 18, 1136-1144.	1.7	50

#	Article	IF	CITATIONS
109	Vegetation and soil recovery in wilderness campsites closed to visitor use. Environmental Management, 1986, 10, 375-380.	2.7	36