Erasmo Recami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10531283/publications.pdf Version: 2024-02-01

EDASMO RECAMI

#	Article	IF	CITATIONS
1	Arrays of frozen waves: Some theory and experiments. Optics Communications, 2021, 482, 126576.	1.0	1
2	Structured Light by Linking Diffraction-Resistant Spatially Shaped Beams. Physical Review Applied, 2018, 10, .	1.5	2
3	On a Time–Space Operator (and other Non-Self-Adjoint Operators) for Observables in QM and QFT. , 2016, , 371-417.		2
4	Production of dynamic frozen waves: controlling shape, location (and speed) of diffraction-resistant beams. Optics Letters, 2015, 40, 5834.	1.7	26
5	Producing acoustic †Frozen Waves': Simulated experiments with diffraction/attenuation resistant beams in lossy media. Ultrasonics, 2014, 54, 1620-1630.	2.1	6
6	Producing acoustic frozen waves: simulated experiments. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 2414-2425.	1.7	11
7	Cherenkov radiation versus X-shaped localized waves: reply. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 2536.	0.8	4
8	Soliton-like solutions to the ordinary Schrödinger equation within standard quantum mechanics. Journal of Mathematical Physics, 2012, 53, .	0.5	9
9	ON NON-SELF-ADJOINT OPERATORS FOR OBSERVABLES IN QUANTUM MECHANICS AND QUANTUM FIELD THEORY. International Journal of Modern Physics A, 2010, 25, 1785-1818.	0.5	15
10	Introduction of a Quantum of Time ("chrononâ€) , and its Consequences for the Electron in Quantum and Classical Physics. Advances in Imaging and Electron Physics, 2010, , 33-115.	0.1	2
11	Cherenkov radiation versus X-shaped localized waves. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2010, 27, 928.	0.8	11
12	Chapter 4 Localized Waves: A Review. Advances in Imaging and Electron Physics, 2009, , 235-353.	0.1	32
13	Superluminal waves and objects: An overview of the relevant experiments. Journal of Physics: Conference Series, 2009, 196, 012020.	0.3	21
14	Subluminal wave bullets: Exact localized subluminal solutions to the wave equations. Physical Review A, 2008, 77, .	1.0	39
15	Deriving Spin within a Discrete-Time Theory. Foundations of Physics, 2007, 37, 277-294.	0.6	1
16	Theory of "frozen waves― modeling the shape of stationary wave fields. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2005, 22, 2465.	0.8	94
17	Properties of localized pulses through the analysis of temporal modulation effects in Bessel beams and the convolution theorem. Optics Communications, 2004, 229, 99-107.	1.0	12
18	Unified time analysis of photon and particle tunnelling. Physics Reports, 2004, 398, 133-178.	10.3	155

ERASMO RECAMI

#	Article	IF	CITATIONS
19	Localized X-shaped field generated by a superluminal electric charge. Physical Review E, 2004, 69, 027602.	0.8	27
20	Superluminal tunnelling through successive barriers: Does qm predict infinite group-velocities?. Journal of Modern Optics, 2004, 51, 913-923.	0.6	26
21	Focused X-shaped pulses. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2004, 21, 1564.	0.8	30
22	Chirped optical X-shaped pulses in material media. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2004, 21, 2455.	0.8	22
23	Superluminal localized solutions to Maxwell equations propagating along a waveguide: The finite-energy case. Physical Review E, 2003, 67, 036620.	0.8	26
24	Superluminal X-shaped beams propagating without distortion along a coaxial guide. Physical Review E, 2002, 66, 046617.	0.8	29
25	Superluminal localized solutions to Maxwell equations propagating along a normal-sized waveguide. Physical Review E, 2001, 64, 066603.	0.8	32
26	Superluminal Motions? A Bird's-Eye View of the Experimental Situation. Foundations of Physics, 2001, 31, 1119-1135.	0.6	69
27	Effects of spin on the cyclotron frequency for a Dirac electron. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 267, 219-224.	0.9	6
28	SPECIAL RELATIVITY AND SUPERLUMINAL MOTIONS: A DISCUSSION OF SOME RECENT EXPERIMENTS. International Journal of Modern Physics A, 2000, 15, 2793-2812.	0.5	25
29	Propagation speed of evanescent modes. Physical Review E, 2000, 62, 8628-8635.	0.8	71
30	Superluminal motions in special relativity. , 1999, , .		1
31	A Velocity Field and Operator for Spinning Particles in (Nonrelativistic) Quantum Mechanics. Foundations of Physics, 1998, 28, 763-776.	0.6	21
32	On localized "X-shaped―Superluminal solutions to Maxwell equations. Physica A: Statistical Mechanics and Its Applications, 1998, 252, 586-610.	1.2	113
33	Kinematics and hydrodynamics of spinning particles. Physical Review A, 1998, 57, 98-105.	1.0	57
34	Hydrodynamical Reformulation and Quantum Limit of the Barut-Zanghi Theory. , 1998, , 285-296.		0
35	Hydrodynamical Reformulation and Quantum Limit of The Barut–Zanghi Theory. Foundations of Physics Letters, 1997, 10, 533-546.	0.6	12
36	Field Theory of the Spinning Electron: II — The New Non-Linear Field Equations. NATO ASI Series Series B: Physics, 1997, , 253-260.	0.2	0

Erasmo Recami

#	Article	IF	CITATIONS
37	FIELD THEORY OF THE ELECTRON: SPIN AND ZITTERBEWEGUNG. , 1996, , 345-368.		4
38	On the phenomenology of tachyon radiation. Foundations of Physics Letters, 1995, 8, 127-134.	0.6	11
39	More about Tunnelling Times, the Dwell Time and the "Hartman Effectâ€: Journal De Physique, I, 1995, 5, 1351-1365.	1.2	47
40	Field theory of the spinning electron and internal motions. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 190, 137-143.	0.9	16
41	Reply to the comments by leavens on Olkhovsky-Recami's approach to the "tunnelling time problem― More about the time analysis of tunnelling processes. Solid State Communications, 1994, 89, 31-35.	0.9	9
42	The strong coupling constant: Its theoretical derivation from a geometric approach to hadron structure. Foundations of Physics Letters, 1994, 7, 85-93.	0.6	9
43	"Regge-like―relations for stable (non-evaporating) black holes. Foundations of Physics Letters, 1994, 7, 167-179.	0.6	1
44	A generalization of Dirac nonlinear electrodynamics, and spinning charged particles. Foundations of Physics, 1993, 23, 469-485.	0.6	13
45	About zitterbewegung and electron structure. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1993, 318, 623-628.	1.5	32
46	Spin and electron structure. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1993, 318, 481-488.	1.5	46
47	Recent developments in the time analysis of tunneling processes. Physics Reports, 1992, 214, 339-356.	10.3	251
48	Magnetic monopoles without string in the KÃĦler–Clifford algebra bundle: A geometrical interpretation. Journal of Mathematical Physics, 1990, 31, 502-505.	0.5	26
49	MAGNETIC MONOPOLES WITHOUT STRINGS BY KÃ, HLER-CLIFFORD ALGEBRA: GEOMETRICAL INTERPRETATION OF A SATISFACTORY FORMALISM. Modern Physics Letters A, 1990, 05, 543-549.	0.5	0
50	Comments on a paper by Marchildon, Antippa, and Everett about tachyons. Foundations of Physics Letters, 1989, 2, 389-394.	0.6	0
51	Tachyon kinematics and causality: A systematic thorough analysis of the tachyon causal paradoxes. Foundations of Physics, 1987, 17, 239-296.	0.6	56
52	Response to Kowalczy?ski on tachyons. International Journal of Theoretical Physics, 1987, 26, 913-919.	0.5	0
53	Does thermodynamics require our cosmos to undergo a series of contraction/expansion cycles?. Progress in Particle and Nuclear Physics, 1986, 17, 143-152.	5.6	2
54	A satisfactory formalism for magnetic monopoles by Clifford algebras. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1986, 173, 233-236.	1.5	27

Erasmo Recami

#	Article	IF	CITATIONS
55	Does thermodynamics require a new expansion after the "big crunch―of our cosmos?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1986, 177, 304-309.	1.5	0
56	Tachyons: may they have a role in elementary particle physics?. Progress in Particle and Nuclear Physics, 1985, 15, 499-517.	5.6	6
57	The introduction of Superluminal Lorentz transformations: A revisitation. Foundations of Physics, 1984, 14, 367-407.	0.6	18
58	A modified large number theory withconstant G. Foundations of Physics, 1983, 13, 341-346.	0.6	14
59	Antiparticles from special Relativity with ortho-chronous and antichronous Lorentz transformations. Foundations of Physics, 1982, 12, 709-718.	0.6	44
60	Answer to "information flow, causality, and the classical theory of Tachyons― International Journal of Theoretical Physics, 1978, 17, 77-79.	0.5	6
61	How to recover causality in special relativity for tachyons. Foundations of Physics, 1978, 8, 329-340.	0.6	36
62	Gravitation and Tachyons. , 1977, , 305-321.		3