List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10530863/publications.pdf

Version: 2024-02-01

287	26,691	4942	148
papers	citations	h-index	g-index
295 all docs	295 docs citations	295 times ranked	29954 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
2	Meta- and Orthogonal Integration of Influenza "OMICs―Data Defines a Role for UBR4 in Virus Budding. Cell Host and Microbe, 2015, 18, 723-735.	5.1	868
3	Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics, 2012, 28, 2678-2679.	1.8	799
4	Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature, 1987, 325, 458-462.	13.7	667
5	Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature, 2010, 463, 818-822.	13.7	629
6	Opacity genes in Neisseria gonorrhoeae: Control of phase and antigenic variation. Cell, 1986, 47, 61-71.	13.5	470
7	Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cellular Microbiology, 2000, 2, 155-164.	1.1	388
8	Src Is the Kinase of the Helicobacter pylori CagA Protein in Vitro and in Vivo. Journal of Biological Chemistry, 2002, 277, 6775-6778.	1.6	374
9	The repertoire of silent pilus genes in neisseria gonorrhoeae: Evidence for gene conversion. Cell, 1986, 44, 107-115.	13.5	363
10	The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nature Communications, 2015, 6, 8989.	5.8	354
11	Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. Journal of Cell Biology, 2003, 161, 249-255.	2.3	331
12	Type IV secretion systems and their effectors in bacterial pathogenesis. Current Opinion in Microbiology, 2006, 9, 207-217.	2.3	330
13	Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature, 2006, 440, 303-307.	13.7	327
14	Neisseria PilC protein identified as type-4 pilus tip-located adhesin. Nature, 1995, 373, 357-359.	13.7	323
15	Acidic Sphingomyelinase Mediates Entry of N. gonorrhoeae into Nonphagocytic Cells. Cell, 1997, 91, 605-615.	13.5	307
16	Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature, 2009, 457, 731-735.	13.7	254
17	Cholesterol glucosylation promotes immune evasion by Helicobacter pylori. Nature Medicine, 2006, 12, 1030-1038.	15.2	235
18	<i>Helicobacter pylori</i> genome evolution during human infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5033-5038.	3.3	235

#	Article	IF	Citations
19	The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation. EMBO Journal, 2003, 22, 515-528.	3 . 5	212
20	Interaction of two variable proteins (PilE and PilC) required for pilus-mediated adherence of Neisseria gonorrhoeae to human epithelial cells. Molecular Microbiology, 1992, 6, 3439-3450.	1.2	211
21	Phosphorylation of tyrosine 972 of the Helicobacter pylori CagA protein is essential for induction of a scattering phenotype in gastric epithelial cells. Molecular Microbiology, 2008, 42, 631-644.	1.2	211
22	Proteome Analysis of Secreted Proteins of the Gastric Pathogen Helicobacter pylori. Infection and Immunity, 2002, 70, 3396-3403.	1.0	206
23	Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy. IScience, 2021, 24, 102151.	1.9	202
24	Gain and Loss of Multiple Genes During the Evolution of Helicobacter pylori. PLoS Genetics, 2005, 1, e43.	1.5	198
25	A novel human gastric primary cell culture system for modelling <i>Helicobacter pylori </i> in vitro. Gut, 2016, 65, 202-213.	6.1	195
26	Reassortment of pilin genes in Neisseria gonorrhoeae occurs by two distinct mechanisms. Nature, 1989, 338, 651-652.	13.7	186
27	The Autodisplay Story, from Discovery to Biotechnical and Biomedical Applications. Microbiology and Molecular Biology Reviews, 2007, 71, 600-619.	2.9	186
28	Aflagellated mutants of Helicobacter pylori generated by genetic transformation of naturally competent strains using transposon shuttle mutagenesis. Molecular Microbiology, 1993, 8, 753-760.	1.2	179
29	SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals. Nature Communications, 2021, 12, 3818.	5 . 8	172
30	Immunoproteomics of Helicobacter pylori infection and relation to gastric disease. Proteomics, 2002, 2, 313.	1.3	170
31	Genome-wide analysis of transcriptional hierarchy and feedback regulation in the flagellar system of Helicobacter pylori. Molecular Microbiology, 2004, 52, 947-961.	1.2	165
32	Stromal R-spondin orchestrates gastric epithelial stem cells and gland homeostasis. Nature, 2017, 548, 451-455.	13.7	159
33	Activation of Activator Protein 1 and Stress Response Kinases in Epithelial Cells Colonized by Helicobacter pylori Encoding the cag Pathogenicity Island. Journal of Biological Chemistry, 1999, 274, 31655-31662.	1.6	158
34	Common structural features of IgA1 protease-like outer membrane protein autotransporters. Molecular Microbiology, 1995, 18, 378-380.	1.2	154
35	Opacity determinants of Neisseria gonorrhoeae: Gene expression and chromosomal linkage to the gonococcal pilus gene. Cell, 1984, 37, 447-456.	13.5	152
36	Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nature Medicine, 2020, 26, 1063-1069.	15.2	149

#	Article	IF	Citations
37	Differential Opa specificities for CD66 receptors influence tissue interactions and cellular response to Neisseria gonorrhoeae. Molecular Microbiology, 1997, 26, 971-980.	1.2	146
38	Transformation competence and type-4 pilus biogenesis in Neisseriagonorrhoeae – areview. Gene, 1997, 192, 125-134.	1.0	144
39	MicroRNA-155 Is Essential for the T Cell-Mediated Control of <i>Helicobacter pylori</i> Infection and for the Induction of Chronic Gastritis and Colitis. Journal of Immunology, 2011, 187, 3578-3586.	0.4	144
40	Neisseria gonorrhoeae Epithelial Cell Interaction Leads to the Activation of the Transcription Factors Nuclear Factor \hat{P} B and Activator Protein 1 and the Induction of Inflammatory Cytokines. Journal of Experimental Medicine, 1997, 186, 247-258.	4.2	143
41	Genetic variation in pathogenic bacteria. Trends in Genetics, 1992, 8, 422-427.	2.9	142
42	Specific Entry of Helicobacter pylori into Cultured Gastric Epithelial Cells via a Zipper-Like Mechanism. Infection and Immunity, 2002, 70, 2108-2120.	1.0	142
43	Proteomic identification of secreted proteins of Propionibacterium acnes. BMC Microbiology, 2010, 10, 230.	1.3	142
44	Functional Analysis of the Helicobacter pylori cag Pathogenicity Island Reveals Both VirD4-CagA-Dependent and VirD4-CagA-Independent Mechanisms. Infection and Immunity, 2002, 70, 665-671.	1.0	140
45	ALPK1- and TIFA-Dependent Innate Immune Response Triggered by the Helicobacter pylori Type IV Secretion System. Cell Reports, 2017, 20, 2384-2395.	2.9	139
46	Chlamydia Infection Promotes Host DNA Damage and Proliferation but Impairs the DNA Damage Response. Cell Host and Microbe, 2013, 13, 746-758.	5.1	137
47	Identification of Surface Proteins of Helicobacter pylori by Selective Biotinylation, Affinity Purification, and Two-dimensional Gel Electrophoresis. Journal of Biological Chemistry, 2002, 277, 27896-27902.	1.6	135
48	From the inside out - processing of the Chlamydial autotransporter PmpD and its role in bacterial adhesion and activation of human host cells. Molecular Microbiology, 2004, 51, 319-334.	1.2	131
49	Protection of mice against gastric colonization by Helicobacter pylori by single oral dose immunization with attenuated Salmonella typhimurium producing urease subunits A and B. Vaccine, 1998, 16, 460-471.	1.7	129
50	Prevalence of Propionibacterium acnes in diseased prostates and its inflammatory and transforming activity on prostate epithelial cells. International Journal of Medical Microbiology, 2011, 301, 69-78.	1.5	126
51	Modulation of Neisseria Porin (PorB) by Cytosolic ATP/GTP of Target Cells: Parallels between Pathogen Accommodation and Mitochondrial Endosymbiosis. Cell, 1996, 85, 391-402.	13.5	123
52	Rab6 and Rab11 Regulate Chlamydia trachomatis Development and Golgin-84-Dependent Golgi Fragmentation. PLoS Pathogens, 2009, 5, e1000615.	2.1	121
53	Characterization of the ArsRS Regulon of Helicobacter pylori , Involved in Acid Adaptation. Journal of Bacteriology, 2006, 188, 3449-3462.	1.0	120
54	Functional Analysis of the cag Pathogenicity Island in Helicobacter pylori Isolates from Patients with Gastritis, Peptic Ulcer, and Gastric Cancer. Infection and Immunity, 2004, 72, 1043-1056.	1.0	119

#	Article	IF	CITATIONS
55	IFN-Î ³ -Inducible Irga6 Mediates Host Resistance against Chlamydia trachomatis via Autophagy. PLoS ONE, 2009, 4, e4588.	1.1	116
56	Differential recognition of members of the carcinoembryonic antigen family by Afa/Dr adhesins of diffusely adhering Escherichia coli (Afa/Dr DAEC). Molecular Microbiology, 2004, 52, 963-983.	1.2	115
57	Helicobacter pylori Infection Causes Characteristic DNA Damage Patterns in Human Cells. Cell Reports, 2015, 11, 1703-1713.	2.9	114
58	Epithelial Cells Infected with Chlamydophila pneumoniae (Chlamydia pneumoniae) Are Resistant to Apoptosis. Infection and Immunity, 2001, 69, 7880-7888.	1.0	112
59	ADP heptose, a novel pathogenâ€associated molecular pattern identified in <i>Helicobacter pylori</i> FASEB Journal, 2019, 33, 9087-9099.	0.2	110
60	Helicobacter pylori inhibits phagocytosis by professional phagocytes involving type IV secretion components. Molecular Microbiology, 2000, 37, 1389-1404.	1.2	109
61	Type IV pilus retraction in pathogenic Neisseria is regulated by the PilC proteins. EMBO Journal, 2004, 23, 2009-2017.	3. 5	108
62	Autophagy restricts <i> <i> Chlamydia trachomatis </i> </i> growth in human macrophages via IFNG-inducible guanylate binding proteins. Autophagy, 2013, 9, 50-62.	4.3	108
63	Comparative Genomics and Transcriptomics of Propionibacterium acnes. PLoS ONE, 2011, 6, e21581.	1.1	107
64	Opa binding to cellular CD66 receptors mediates the transcellular traversal of Neisseria gonorrhoeae across polarized T84 epithelial cell monolayers. Molecular Microbiology, 1998, 30, 657-671.	1.2	106
65	Characterization of the Essential Transport Function of the AIDA-I Autotransporter and Evidence Supporting Structural Predictions. Journal of Bacteriology, 1999, 181, 7014-7020.	1.0	106
66	'Small' talk: Opa proteins as mediators of Neisseria–host-cell communication. Current Opinion in Microbiology, 2003, 6, 43-49.	2.3	104
67	The secretion pathway of IgA protease-type proteins in gram-negative bacteria. BioEssays, 1993, 15, 799-805.	1.2	103
68	TnMax â€" a versatile mini-transposon for the analysis of cloned genes and shuttle mutagenesis. Gene, 1993, 130, 23-31.	1.0	102
69	Induction of microRNA-155 is TLR- and type IV secretion system-dependent in macrophages and inhibits DNA-damage induced apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1153-62.	3.3	102
70	Low iron availability modulates the course of Chlamydia pneumoniae infection. Cellular Microbiology, 2001, 3, 427-437.	1.1	101
71	Characterization of the Neisseria Iga \hat{I}^2 -core. Journal of Molecular Biology, 1993, 234, 579-593.	2.0	99
72	EphrinA2 Receptor (EphA2) Is an Invasion and Intracellular Signaling Receptor for Chlamydia trachomatis. PLoS Pathogens, 2015, 11, e1004846.	2.1	99

#	Article	IF	CITATIONS
73	Autodisplay: Functional Display of Active \hat{l}^2 -Lactamase on the Surface of Escherichia coli by the AIDA-I Autotransporter. Journal of Bacteriology, 2000, 182, 3726-3733.	1.0	98
74	Helicobacter pylori Depletes Cholesterol in Gastric Glands to Prevent Interferon Gamma Signaling and Escape the Inflammatory Response. Gastroenterology, 2018, 154, 1391-1404.e9.	0.6	98
75	Carcinoembryonic Antigen Family Receptor Specificity of Neisseria meningitidis Opa Variants Influences Adherence to and Invasion of Proinflammatory Cytokine-Activated Endothelial Cells. Infection and Immunity, 2000, 68, 3601-3607.	1.0	97
76	Gene Expression Profiles of Chlamydophila pneumoniae during the Developmental Cycle and Iron Depletion–Mediated Persistence. PLoS Pathogens, 2007, 3, e83.	2.1	95
77	Absence of periplasmic DsbA oxidoreductase facilitates export of cysteine-containing passenger proteins to the Escherichia coli cell surface via the $\lg al^2$ autotransporter pathway. Gene, 1996, 178, 107-110.	1.0	93
78	Helicobacter pylori induces but survives the extracellular release of oxygen radicals from professional phagocytes using its catalase activity. Molecular Microbiology, 2000, 38, 103-113.	1.2	93
79	Syndecan-1 and syndecan-4 can mediate the invasion of OpaHSPG-expressing Neisseria gonorrhoeae into epithelial cells. Cellular Microbiology, 2000, 2, 69-82.	1.1	92
80	Comparative Analysis of the Interaction of Helicobacter pylori with Human Dendritic Cells, Macrophages, and Monocytes. Infection and Immunity, 2012, 80, 2724-2734.	1.0	92
81	The Circadian Clock Regulates Metabolic Phenotype Rewiring Via HKDC1 and Modulates Tumor Progression and Drug Response in Colorectal Cancer. EBioMedicine, 2018, 33, 105-121.	2.7	91
82	R-spondin 3 promotes stem cell recovery and epithelial regeneration in the colon. Nature Communications, 2019, 10, 4368.	5.8	91
83	Vitronectin-dependent invasion of epithelial cells byNeisseria gonorrhoeaeinvolves αvintegrin receptors. FEBS Letters, 1998, 424, 84-88.	1.3	90
84	The Human Gastric Pathogen (i) Helicobacter pylori (i) and Its Association with Gastric Cancer and Ulcer Disease. Ulcers, 2011, 2011, 1-23.	1.0	90
85	Evidence for a crucial role of a host non-coding RNA in influenza A virus replication. RNA Biology, 2014, 11, 66-75.	1.5	90
86	Roles of PilC and PilE Proteins in Pilus-Mediated Adherence of <i>Neisseria gonorrhoeae</i> and <i>Neisseria meningitidis</i> to Human Erythrocytes and Endothelial and Epithelial Cells. Infection and Immunity, 1999, 67, 834-843.	1.0	90
87	Helicobacter pylori Induces miR-155 in T Cells in a cAMP-Foxp3-Dependent Manner. PLoS ONE, 2010, 5, e9500.	1.1	89
88	Pilus biogenesis and epithelial cell adherence of Neisseria gonorrhoeae pilC double knock-out mutants. Molecular Microbiology, 1995, 17, 1057-1071.	1.2	87
89	Helicobacter pyloristimulates host cyclooxygenase-2 gene transcription: critical importance of MEK/ERK-dependent activation of USF1/-2 and CREB transcription factors. Cellular Microbiology, 2003, 5, 821-834.	1.1	87
90	Novel determinant (comA) essential for natural transformation competence in Neisseria gonorrhoeae and the effect of a comA defect on pilin variation. Molecular Microbiology, 1993, 10, 699-712.	1.2	86

#	Article	IF	Citations
91	The Helicobacter pylori Virulence Effector CagA Abrogates Human \hat{l}^2 -Defensin 3 Expression via Inactivation of EGFR Signaling. Cell Host and Microbe, 2012, 11, 576-586.	5.1	86
92	Pathogenicity island-dependent activation of Rho GTPases Rac1 and Cdc42 in Helicobacter pylori infection. Molecular Microbiology, 2001, 40, 815-823.	1.2	85
93	<i>Helicobacter pylori</i> outer membrane protein HopQ identified as a novel T4SS-associated virulence factor. Cellular Microbiology, 2013, 15, n/a-n/a.	1.1	84
94	Genomic aberrations after short-term exposure to colibactin-producing E. coli transform primary colon epithelial cells. Nature Communications, 2021, 12, 1003.	5.8	84
95	Pathogenic Neisseria Trigger Expression of Their Carcinoembryonic Antigen-related Cellular Adhesion Molecule 1 (CEACAM1; Previously CD66a) Receptor on Primary Endothelial Cells by Activating the Immediate Early Response Transcription Factor, Nuclear Factor-κB. Journal of Biological Chemistry, 2001. 276. 24331-24340.	1.6	80
96	VDAC and the bacterial porin PorB of Neisseria gonorrhoeae share mitochondrial import pathways. EMBO Journal, 2002, 21, 1916-1929.	3.5	80
97	The Helicobacter pylori CagA protein disrupts matrix adhesion of gastric epithelial cells by dephosphorylation of vinculin. Cellular Microbiology, 2007, 9, 1148-1161.	1.1	80
98	TheHelicobacter pylori CagA protein induces tyrosine dephosphorylation of ezrin. Proteomics, 2004, 4, 2961-2968.	1.3	79
99	Subproteomes of soluble and structure-boundHelicobacter pyloriproteins analyzed by two-dimensional gel electrophoresis and mass spectrometry. Proteomics, 2005, 5, 1331-1345.	1.3	79
100	Cloning of a Cholesterol-α-glucosyltransferase from Helicobacter pylori. Journal of Biological Chemistry, 2006, 281, 27765-27772.	1.6	79
101	The lysosomal/phagosomal membrane protein h-lamp-1 is a target of the IgA1 protease of Neisseria gonorrhoeae. FEBS Letters, 1997, 405, 86-90.	1.3	76
102	CD46-Independent Binding of Neisserial Type IV Pili and the Major Pilus Adhesin, PilC, to Human Epithelial Cells. Infection and Immunity, 2005, 73, 3072-3082.	1.0	76
103	Chronic Chlamydia infection in human organoids increases stemness and promotes age-dependent CpG methylation. Nature Communications, 2019, 10, 1194.	5.8	76
104	Polarised epithelial monolayers of the gastric mucosa reveal insights into mucosal homeostasis and defence against infection. Gut, 2019, 68, 400-413.	6.1	76
105	Distinct mechanisms of internalization of Neisseria gonorrhoeae by members of the CEACAM receptor family involving Rac1- and Cdc42-dependent and -independent pathways. EMBO Journal, 2002, 21, 560-571.	3.5	74
106	A novel peptidoglycanâ€inked lipoprotein (ComL) that functions in natural transformation competence of Neisseria gonorrhoeae. Molecular Microbiology, 1996, 19, 1095-1105.	1.2	72
107	Adoptive Transfer of CD4+ T Cells Specific for Subunit A of Helicobacter pylori Urease ReducesH. pylori Stomach Colonization in Mice in the Absence of Interleukin-4 (IL-4)/IL-13 Receptor Signaling. Infection and Immunity, 2001, 69, 1714-1721.	1.0	72
108	A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs. Nature Communications, 2016, 7, 11320.	5.8	72

#	Article	IF	CITATIONS
109	Identification of a tyrosine-phosphorylated 35 kDa carboxy-terminal fragment (p35CagA) of theHelicobacter pylori CagA protein in phagocytic cells: Processing or breakage?. Proteomics, 2001, 1, 618-629.	1.3	70
110	Interaction of Chlamydia trachomatis Serovar L2 with the Host Autophagic Pathway. Infection and Immunity, 2004, 72, 4751-4762.	1.0	70
111	Chlamydia trachomatis Disturbs Epithelial Tissue Homeostasis in Fallopian Tubes via Paracrine Wnt Signaling. American Journal of Pathology, 2012, 180, 186-198.	1.9	70
112	Stable expansion of highâ€grade serous ovarian cancer organoids requires a lowâ€Wnt environment. EMBO Journal, 2020, 39, e104013.	3.5	70
113	Immunoglobulin A1 Protease, an Exoenzyme of Pathogenic Neisseriae, Is a Potent Inducer of Proinflammatory Cytokines. Journal of Experimental Medicine, 1999, 190, 1049-1058.	4.2	69
114	Characterization and intracellular trafficking pattern of vacuoles containing Chlamydia pneumoniae in human epithelial cells. Cellular Microbiology, 1999, 1, 237-247.	1.1	69
115	Chlamydia infection depends on a functional MDM2-p53 axis. Nature Communications, 2014, 5, 5201.	5.8	69
116	Enzymatic synthesis of bacteriophage fd viral DNA. Nature, 1982, 296, 828-832.	13.7	68
117	An improved TnMax mini-transposon system suitable for sequencing shuttle mutagenesis and gene fusions. Gene, 1995, 167, 53-57.	1.0	68
118	Autodisplay. Infection and Immunity, 2003, 71, 6320-6328.	1.0	67
119	Helicobacter pylori Induces AGS Cell Motility and Elongation via Independent Signaling Pathways. Infection and Immunity, 2004, 72, 3646-3649.	1.0	67
120	The ALPK1/TIFA/NF- \hat{l}^{0} B axis links a bacterial carcinogen to R-loop-induced replication stress. Nature Communications, 2020, 11, 5117.	5.8	67
121	Helicobacter pylori Activates the Histidine Decarboxylase Promoter through a Mitogen-activated Protein Kinase Pathway Independent of Pathogenicity Island-encoded Virulence Factors. Journal of Biological Chemistry, 2000, 275, 3629-3636.	1.6	66
122	Helicobacter pylori stimulates host vascular endothelial growth factorâ€A (vegfâ€A) gene expression via MEK/ERKâ€dependent activation of Sp1 and Sp3. FASEB Journal, 2004, 18, 218-220.	0.2	63
123	<i>Helicobacterpylori</i> -induced modification of the histone H3 phosphorylation status in gastric epithelial cells reflects its impact on cell cycle regulation. Epigenetics, 2009, 4, 577-586.	1.3	63
124	Tarp regulates early <i>Chlamydia</i> -induced host cell survival through interactions with the human adaptor protein SHC1. Journal of Cell Biology, 2010, 190, 143-157.	2.3	63
125	Molecular analysis of neisserial Opa protein interactions with the CEA family of receptors: identification of determinants contributing to the differential specificities of binding. Cellular Microbiology, 1999, 1, 169-181.	1.1	62
126	Temporal resolution of two-tracked NF-κB activation by <i>Legionella pneumophila</i> . Cellular Microbiology, 2009, 11, 1638-1651.	1,1	62

#	Article	IF	Citations
127	InFusion: Advancing Discovery of Fusion Genes and Chimeric Transcripts from Deep RNA-Sequencing Data. PLoS ONE, 2016, 11, e0167417.	1.1	62
128	Opposing Wnt signals regulate cervical squamocolumnar homeostasis and emergence of metaplasia. Nature Cell Biology, 2021, 23, 184-197.	4.6	62
129	Host cell interactions and signalling with Neisseria gonorrhoeae. Current Opinion in Microbiology, 1999, 2, 62-70.	2.3	61
130	Subversion of host genome integrity by bacterial pathogens. Nature Reviews Molecular Cell Biology, 2016, 17, 659-673.	16.1	59
131	A plasmid cloning system utilizing replication and packaging functions of the filamentous bacteriophage fd. Gene, 1985, 33, 341-349.	1.0	58
132	Helicobacter pylori Resists Phagocytosis by Macrophages: Quantitative Assessment by Confocal Microscopy and Fluorescence-Activated Cell Sorting. Infection and Immunity, 2001, 69, 2604-2611.	1.0	58
133	Autophagy-independent function of MAP-LC3 during intracellular propagation of <i>Chlamydia trachomatis </i> . Autophagy, 2011, 7, 814-828.	4.3	56
134	Immunity against Helicobacter pylori: Significance of Interleukin-4 Receptor α Chain Status and Gender of Infected Mice. Infection and Immunity, 2001, 69, 556-558.	1.0	55
135	Modulation of the CD4+ T-Cell Response by Helicobacter pylori Depends on Known Virulence Factors and Bacterial Cholesterol and Cholesterol α-Glucoside Content. Journal of Infectious Diseases, 2011, 204, 1339-1348.	1.9	55
136	Neisseria gonorrhoeae Porin Modulates Phagosome Maturation. Journal of Biological Chemistry, 1998, 273, 35332-35338.	1.6	54
137	Vaccination preventsHelicobacter pylori-induced alterations of the gastric flora in mice. FEMS Immunology and Medical Microbiology, 2006, 46, 221-229.	2.7	54
138	Mutagenesis of the Neisseria gonorrhoeae porin reduces invasion in epithelial cells and enhances phagocyte responsiveness. Molecular Microbiology, 1999, 31, 903-913.	1.2	53
139	Expression and translocation of chlamydial protease during acute and persistent infection of the epithelial HEp-2 cells with Chlamydophila (Chlamydia) pneumoniae. Cellular Microbiology, 2003, 5, 315-322.	1.1	53
140	R-spondin-3 induces secretory, antimicrobial Lgr5+ cells in the stomach. Nature Cell Biology, 2019, 21, 812-823.	4.6	53
141	Deciphering the Intracellular Fate of <i>Propionibacterium acnes </i> International, 2013, 2013, 1-11.	0.9	52
142	Ligation of Cell Surface Heparan Sulfate Proteoglycans by Antibody-Coated Beads Stimulates Phagocytic Uptake into Epithelial Cells: A Model for Cellular Invasion byNeisseria gonorrhoeae. Experimental Cell Research, 1998, 242, 528-539.	1.2	51
143	Proteome analysis of the common human pathogenHelicobacter pylori. Proteomics, 2001, 1, 473-479.	1.3	51
144	Helicobacter pylori-induced Prostaglandin E2 Synthesis Involves Activation of Cytosolic Phospholipase A2 in Epithelial Cells. Journal of Biological Chemistry, 2001, 276, 804-810.	1.6	51

#	Article	IF	Citations
145	Identification of candidate antigens for serologic detection of Helicobacter pylori-infected patients with gastric carcinoma. International Journal of Cancer, 2004, 108, 456-463.	2.3	51
146	<scp><i>C</i></scp> <i>hlamydia trachomatis</i> remodels stable microtubules to coordinateGolgi stack recruitment to the chlamydial inclusion surface. Molecular Microbiology,2014, 94, 1285-1297.	1.2	50
147	The structural basis of CEACAM-receptor targeting by neisserial Opa proteins. Trends in Microbiology, 2000, 8, 258-260.	3.5	49
148	<i>Helicobacter pylori</i> HP0518 affects flagellin glycosylation to alter bacterial motility. Molecular Microbiology, 2010, 78, 1130-1144.	1.2	49
149	A Loss-of-Function Screen Reveals Ras- and Raf-Independent MEK-ERK Signaling During <i>Chlamydia trachomatis</i> Infection. Science Signaling, 2010, 3, ra21.	1.6	49
150	The anti-inflammatory compound curcumin inhibits Neisseria gonorrhoeae-induced NF-κB signaling, release of pro-inflammatory cytokines/chemokines and attenuates adhesion in late infection. Biological Chemistry, 2005, 386, 481-490.	1.2	47
151	Genome plasticity inNeisseria gonorrhoeae. FEMS Microbiology Letters, 1996, 145, 173-179.	0.7	46
152	Tetrapac (tpc), a novel genotype of Neisseria gonorrhoeae affecting epithelial cell invasion, natural transformation competence and cell separation. Molecular Microbiology, 1996, 19, 1357-1372.	1.2	46
153	<i>Klebsiella pneumoniae</i> targets an EGF receptor-dependent pathway to subvert inflammation. Cellular Microbiology, 2013, 15, 1212-1233.	1.1	46
154	Gastric cancer pathogenesis. Helicobacter, 2016, 21, 34-38.	1.6	46
155	Integrated Phosphoproteome and Transcriptome Analysis Reveals Chlamydia-Induced Epithelial-to-Mesenchymal Transition in Host Cells. Cell Reports, 2019, 26, 1286-1302.e8.	2.9	46
156	Uptake and nuclear transport of Neisseria IgA1 protease-associated alpha-proteins in human cells. Molecular Microbiology, 1995, 17, 1073-1083.	1.2	44
157	Tyrosine phosphorylation patterns and size modification of theHelicobacter pylori CagA protein after translocation into gastric epithelial cells. Proteomics, 2001, 1, 608-617.	1.3	44
158	A Global Approach Combining Proteome Analysis and Phenotypic Screening with RNA Interference Yields Novel Apoptosis Regulators. Molecular and Cellular Proteomics, 2005, 4, 44-55.	2.5	44
159	Low-Phosphate-Dependent Invasion Resembles a General Way for Neisseria gonorrhoeae To Enter Host Cells. Infection and Immunity, 2006, 74, 4266-4273.	1.0	44
160	Complex kinase requirements for <i>Chlamydia trachomatis </i> Tarp phosphorylation. FEMS Microbiology Letters, 2008, 289, 233-240.	0.7	44
161	High-throughput and single-cell imaging of NF-κB oscillations using monoclonal cell lines. BMC Cell Biology, 2010, 11, 21.	3.0	44
162	The Cofilin Phosphatase Slingshot Homolog 1 (SSH1) Links NOD1 Signaling to Actin Remodeling. PLoS Pathogens, 2014, 10, e1004351.	2.1	44

#	Article	IF	CITATIONS
163	Chlamydia trachomatis Prevents Apoptosis Via Activation of PDPK1-MYC and Enhanced Mitochondrial Binding of Hexokinase II. EBioMedicine, 2017, 23, 100-110.	2.7	44
164	A plasmid system for high-level expression and in vitro processing of recombinant proteins. Gene, 1993, 130, 121-126.	1.0	43
165	PilC of Neisseria meningitidis is involved in class II pilus formation and restores pilus assembly, natural transformation competence and adherence to epithelial cells in PilCâ€deficient gonococci. Molecular Microbiology, 1997, 23, 879-892.	1.2	43
166	HIF- $\hat{\Pi}$ ± is involved in mediating apoptosis resistance to Chlamydia trachomatis-infected cells. Cellular Microbiology, 2011, 13, 1573-1585.	1.1	43
167	Targeting of a Chlamydial Protease Impedes Intracellular Bacterial Growth. PLoS Pathogens, 2011, 7, e1002283.	2.1	43
168	<i>Propionibacterium acnes</i> host cell tropism contributes to vimentin-mediated invasion and induction of inflammation. Cellular Microbiology, 2012, 14, 1720-1733.	1.1	43
169	Comparative genomics reveals distinct host-interacting traits of three major human-associated propionibacteria. BMC Genomics, 2013, 14, 640.	1.2	43
170	Coordinate Activation of Activator Protein 1 and Inflammatory Cytokines in Response to Neisseria gonorrhoeae Epithelial Cell Contact Involves Stress Response Kinases. Journal of Experimental Medicine, 1998, 188, 1277-1286.	4.2	42
171	Host Cell Invasion by Pathogenic Neisseriae. Sub-Cellular Biochemistry, 2000, 33, 61-96.	1.0	42
172	Bâ€Raf/Rap1 signaling, but not câ€Rafâ€1/Ras, induces the histidine decarboxylase promoter in Helicobacter pylori infection. FASEB Journal, 2002, 16, 417-419.	0.2	41
173	<i>In Vivo</i> Sequence Variation in HopZ, a Phase-Variable Outer Membrane Protein of Helicobacter pylori. Infection and Immunity, 2012, 80, 4364-4373.	1.0	41
174	Immunogenicity and evolutionary variability of epitopes within IgA1 protease from serogroup A Neisseria meningitidis. Molecular Microbiology, 1994, 11, 175-187.	1.2	40
175	Sequential action of factors involved in natural competence for transformation of Neisseria gonorrhoeae. FEMS Microbiology Letters, 1996, 137, 159-164.	0.7	40
176	Mutagenesis of Propionibacterium acnes and analysis of two CAMP factor knock-out mutants. Journal of Microbiological Methods, 2010, 83, 211-216.	0.7	40
177	Neisseria gonorrhoeae Porin Modifies the Oxidative Burst of Human Professional Phagocytes. Infection and Immunity, 2000, 68, 6215-6222.	1.0	38
178	The PilC adhesin of the Neisseria type IV pilus - binding specificities and new insights into the nature of the host cell receptor. Molecular Microbiology, 2005, 56, 945-957.	1.2	38
179	vaccine development: Facing the challenge. International Journal of Medical Microbiology, 2005, 295, 343-353.	1.5	38
180	Renaming protein secretion in the Gram-negative bacteria. Trends in Microbiology, 2000, 8, 352.	3.5	37

#	Article	IF	Citations
181	Nuclear Factor-l [®] B Directs Carcinoembryonic Antigen-related Cellular Adhesion Molecule 1 Receptor Expression inNeisseria gonorrhoeae-infected Epithelial Cells. Journal of Biological Chemistry, 2002, 277, 7438-7446.	1.6	37
182	Competitive Inhibition of Amino Acid Uptake Suppresses Chlamydial Growth: Involvement of the Chlamydial Amino Acid Transporter BrnQ. Journal of Bacteriology, 2008, 190, 1822-1830.	1.0	37
183	Gene expression and protein profiling of AGS gastric epithelial cells upon infection withHelicobacter pylori. Proteomics, 2005, 5, 3902-3918.	1.3	36
184	A Comparison of Murine and Human Immunoproteomes of Helicobacter pylori Validates the Preclinical Murine Infection Model for Antigen Screening. Infection and Immunity, 2002, 70, 6494-6498.	1.0	35
185	Quantitative phosphoproteomics reveals link between <i>Helicobacter pylori</i> infection and RNA splicing modulation in host cells. Proteomics, 2011, 11, 2798-2811.	1.3	35
186	IgA1 protease fromNeisseria gonorrhoeaeinhibits TNFα-mediated apoptosis of human monocytic cells. FEBS Letters, 2000, 472, 287-292.	1.3	34
187	Proteomic and gene profiling approaches to study host responses to bacterial infection. Current Opinion in Microbiology, 2004, 7, 33-38.	2.3	34
188	Generalized transposon shuttle mutagenesis in Neisseria gonorrhoeae: a method for isolating epithelial cell invasion-defective mutants. Molecular Microbiology, 1994, 12, 819-831.	1.2	33
189	Analysis of Cell Type-Specific Responses Mediated by the Type IV Secretion System of Helicobacter pylori. Infection and Immunity, 2005, 73, 4643-4652.	1.0	33
190	Inflammation, Immunity, and Vaccines for <i>Helicobacter</i> . Helicobacter, 2010, 15, 21-28.	1.6	32
191	Tyrosine-Phosphorylated Caveolin-1 Blocks Bacterial Uptake by Inducing Vav2-RhoA-Mediated Cytoskeletal Rearrangements. PLoS Biology, 2010, 8, e1000457.	2.6	32
192	Combined Human Genome-wide RNAi and Metabolite Analyses Identify IMPDH as a Host-Directed Target against Chlamydia Infection. Cell Host and Microbe, 2018, 23, 661-671.e8.	5.1	32
193	Transformation-mediated exchange of virulence determinants by co-cultivation of pathogenic Neisseriae. FEMS Microbiology Letters, 1992, 100, 345-349.	0.7	32
194	Modelling Chlamydia and HPV co-infection in patient-derived ectocervix organoids reveals distinct cellular reprogramming. Nature Communications, 2022, 13, 1030.	5.8	32
195	Cytoskeleton and motor proteins are required for the transcytosis of Neisseria gonorrhoeae through polarized epithelial cells. International Journal of Medical Microbiology, 2008, 298, 209-221.	1.5	31
196	Helicobacter pylori vaccine development based on combined subproteome analysis. Proteomics, 2004, 4, 2843-2848.	1.3	30
197	Inflammation, Immunity, Vaccines for <i>Helicobacter pylori</i> infection. Helicobacter, 2013, 18, 18-23.	1.6	30
198	Molecular basis of surface antigen variation in Neisseria. Trends in Genetics, 1987, 3, 319-324.	2.9	29

#	Article	IF	Citations
199	Vaccination of mice with live recombinant Salmonella typhimurium aroA against H. pylori: parameters associated with prophylactic and therapeutic vaccine efficacy. Vaccine, 2001, 20, 413-420.	1.7	29
200	TIFA has dual functions in <i>Helicobacter pylori</i> â€induced classical and alternative NFâ€PB pathways. EMBO Reports, 2021, 22, e52878.	2.0	29
201	Tyrosine Phosphatase SHP-1 Is Involved in CD66-Mediated Phagocytosis of Opa ₅₂ -Expressing <i>Neisseria gonorrhoeae</i>). Infection and Immunity, 1999, 67, 5490-5494.	1.0	29
202	The Orphan Response Regulator HP1021 of Helicobacter pylori Regulates Transcription of a Gene Cluster Presumably Involved in Acetone Metabolism. Journal of Bacteriology, 2007, 189, 2339-2349.	1.0	28
203	H. pyloriselectively blocks EGFR endocytosis via the non-receptor kinase c-Abl and CagA. Cellular Microbiology, 2009, 11, 156-169.	1.1	28
204	Potential role of two Helicobacter pylori relaxases in DNA transfer?. Molecular Microbiology, 1998, 30, 673-674.	1.2	27
205	cag + Helicobacter pylori Induces Homotypic Aggregation of Macrophage-Like Cells by Up-Regulation and Recruitment of Intracellular Adhesion Molecule 1 to the Cell Surface. Infection and Immunity, 2002, 70, 4687-4691.	1.0	27
206	Neisseria meningitidis Differentially Controls Host Cell Motility through PilC1 and PilC2 Components of Type IV Pili. PLoS ONE, 2009, 4, e6834.	1.1	27
207	hGBP1 Coordinates Chlamydia Restriction and Inflammasome Activation through Sequential GTP Hydrolysis. Cell Reports, 2020, 31, 107667.	2.9	27
208	Leptin Receptor Signaling is Required for Vaccineâ€Induced Protection Against <i>Helicobacter pylori</i> . Helicobacter, 2008, 13, 94-102.	1.6	26
209	RNAi-based small molecule repositioning reveals clinically approved urea-based kinase inhibitors as broadly active antivirals. PLoS Pathogens, 2019, 15, e1007601.	2.1	26
210	<i>Helicobacter pylori</i> vacA genotype is a predominant determinant of immune response to <i>Helicobacter pylori</i> CagA. World Journal of Gastroenterology, 2017, 23, 4712.	1.4	26
211	Helicobacter pylori type IV secretion, host cell signalling and vaccine development. Keio Journal of Medicine, 2002, 51, 6-14.	0.5	25
212	Activation of NF-κB by Neisseria gonorrhoeae is associated with microcolony formation and type IV pilus retraction. Cellular Microbiology, 2011, 13, 1168-1182.	1.1	25
213	EGF and BMPs Govern Differentiation and Patterning in Human Gastric Glands. Gastroenterology, 2021, 161, 623-636.e16.	0.6	25
214	Identification of Helicobacter pylori surface proteins by selective proteinase K digestion and antibody phage display. Journal of Microbiological Methods, 2005, 62, 345-349.	0.7	24
215	Lack of Stage-Specific Proteins in Coccoid Helicobacter pylori Cells. Infection and Immunity, 2004, 72, 6738-6742.	1.0	23
216	Bacteriophage fd Gene-2 Protein. Processing of Phage fd Viral Straands Replicated by Phage T7 Enzymes. FEBS Journal, 1981, 119, 663-668.	0.2	22

#	Article	IF	CITATIONS
217	Nucleotide sequence of ompV, the gene for a major Vibrio cholerae outer membrane protein. Molecular Genetics and Genomics, 1986, 205, 494-500.	2.4	22
218	Construction of hermes shuttle vectors: a versatile system useful for genetic complementation of transformable and non-transformableNeisseria mutants. Molecular Genetics and Genomics, 1996, 250, 558-569.	2.4	22
219	Transcription profiling analysis of the mechanisms of vaccineâ€induced protection against H. pylori. FASEB Journal, 2004, 18, 1955-1957.	0.2	22
220	Pilus Phase Variation Switches Gonococcal Adherence to Invasion by Caveolin-1-Dependent Host Cell Signaling. PLoS Pathogens, 2013, 9, e1003373.	2.1	22
221	A new method for the 3-D in vitro growth of human RT112bladder carcinoma cells using the alginate culture technique. Biology of the Cell, 1994, 82, 109-119.	0.7	21
222	Neisserial Immunoglobulin A1 Protease Induces Specific T-Cell Responses in Humans. Infection and Immunity, 2002, 70, 335-344.	1.0	21
223	<i>Chlamydia trachomatis</i> Inhibits Inducible NO Synthase in Human Mesenchymal Stem Cells by Stimulating Polyamine Synthesis. Journal of Immunology, 2014, 193, 2941-2951.	0.4	21
224	Regulation of influenza A virus mRNA splicing by CLK1. Antiviral Research, 2019, 168, 187-196.	1.9	21
225	clAP-1 Controls Innate Immunity to C. pneumoniae Pulmonary Infection. PLoS ONE, 2009, 4, e6519.	1.1	20
226	Chlamydia trachomatis inhibits telomeric DNA damage signaling via transient hTERT upregulation. International Journal of Medical Microbiology, 2013, 303, 463-474.	1.5	20
227	Macrophages recognize theHelicobacter pyloritype IV secretion system in the absence of toll-like receptor signalling. Cellular Microbiology, 2016, 18, 137-147.	1.1	20
228	Genotoxic Effect of <i>Salmonella</i> Paratyphi A Infection on Human Primary Gallbladder Cells. MBio, 2020, 11 , .	1.8	20
229	<i>Chlamydia trachomatis</i> Inhibits Homologous Recombination Repair of DNA Breaks by Interfering with PP2A Signaling. MBio, 2018, 9, .	1.8	19
230	Contribution of the Cpx envelope stress system to metabolism and virulence regulation in Salmonella enterica serovar Typhimurium. PLoS ONE, 2019, 14, e0211584.	1.1	19
231	BMP feed-forward loop promotes terminal differentiation in gastric glands and is interrupted by H. pylori-driven inflammation. Nature Communications, 2022, 13, 1577.	5.8	19
232	Tackling the intractable – Approaching the genetics of Chlamydiales. International Journal of Medical Microbiology, 2007, 297, 569-576.	1.5	18
233	Action and Reaction:Chlamydophila pneumoniae proteome alteration in a persistent infection induced by iron deficiency. Proteomics, 2004, 4, 2969-2981.	1.3	17
234	Analysis of T4SS-induced signaling by H. pylori using quantitative phosphoproteomics. Frontiers in Microbiology, 2014, 5, 356.	1.5	17

#	Article	IF	Citations
235	Helicobacter pylori-controlled c-Abl localization promotes cell migration and limits apoptosis. Cell Communication and Signaling, 2019, 17, 10.	2.7	17
236	Modulation of Host Cell Metabolism by <i>Chlamydia trachomatis</i> . Microbiology Spectrum, 2019, 7,	1.2	16
237	Changes in the surface composition after transmission of Acanthocheilonema vitae third stage larvae into the jird. Molecular and Biochemical Parasitology, 1992, 52, 63-73.	0.5	15
238	Naturally occurring amino acids differentially influence the development of Chlamydia trachomatis and Chlamydia (Chlamydophila) pneumoniae. Journal of Medical Microbiology, 2006, 55, 879-886.	0.7	15
239	Dynaminâ€mediated lipid acquisition is essential for <scp><i>C</i></scp> <i>hlamydia trachomatis</i> development. Molecular Microbiology, 2014, 94, 186-201.	1.2	14
240	Propionibacterium acnes inhibits FOXM1 and induces cell cycle alterations in human primary prostate cells. International Journal of Medical Microbiology, 2016, 306, 517-528.	1.5	14
241	Mucosal Inducible NO Synthase–Producing IgA+ Plasma Cells in <i>Helicobacter pylori</i> Patients. Journal of Immunology, 2016, 197, 1801-1808.	0.4	14
242	Long-Term Culture of Distal Airway Epithelial Cells Allows Differentiation Towards Alveolar Epithelial Cells Suited for Influenza Virus Studies. EBioMedicine, 2018, 33, 230-241.	2.7	14
243	$\mbox{\sc (i) In Vivo Genome and Methylome Adaptation of \mbox{\sc (i) -Negative Helicobacter} pylori during Experimental Human Infection. MBio, 2020, 11, .$	1.8	14
244	Pathogenomics of Helicobacter. International Journal of Medical Microbiology, 2007, 297, 589-600.	1.5	13
245	Quantitative Proteomic Approach Identifies Vpr Binding Protein as Novel Host Factor Supporting Influenza A Virus Infections in Human Cells. Molecular and Cellular Proteomics, 2017, 16, 728-742.	2.5	13
246	Patient-derived and mouse endo-ectocervical organoid generation, genetic manipulation and applications to model infection. Nature Protocols, 2022, 17, 1658-1690.	5.5	13
247	A vaccine against Helicobacter pylori: Towards understanding the mechanism of protection. International Journal of Medical Microbiology, 2008, 298, 161-168.	1.5	12
248	Bacteria Moving into Focus of Human Cancer. Cell Host and Microbe, 2015, 17, 728-730.	5.1	12
249	Coevolution between the Human Microbiota and the Epithelial Immune System. Digestive Diseases, 2016, 34, 190-193.	0.8	12
250	Serological properties and processing in Escherichia coli K12 of OmpV fusion proteins of Vibrio cholerae. Molecular Genetics and Genomics, 1986, 205, 501-506.	2.4	11
251	Molecular principles of antigenic variation in Neisseria gonorrhoeae. Antonie Van Leeuwenhoek, 1987, 53, 431-434.	0.7	11
252	Genomic features of the <i>Helicobacter pylori </i> strain PMSS1 and its virulence attributes as deduced from its <i>in vivo </i> colonisation patterns. Molecular Microbiology, 2018, 110, 761-776.	1.2	11

#	Article	IF	CITATIONS
253	Virulence functions and antigen variation in pathogenic Neisseriae. Antonie Van Leeuwenhoek, 1988, 54, 421-430.	0.7	10
254	Structural and functional modulation of gonococcal surface proteins. Microbial Pathogenesis, 1988, 4, 393-399.	1.3	10
255	Active release of surface proteins: a mechanism associated with the immune escape of Acanthocheilonema viteae microfilariae. Molecular and Biochemical Parasitology, 1990, 43, 199-210.	0.5	10
256	Pathogenic Neisseriae â€" A Model of Bacterial Virulence and Genetic Flexibility. Zentralblatt Fur Bakteriologie: International Journal of Medical Microbiology, 1990, 274, 135-154.	0.5	10
257	Detection of Chlamydophila pneumoniae in the bone marrow of two patients with unexplained chronic anaemia. European Journal of Haematology, 2005, 74, 77-83.	1.1	10
258	Thioloxidoreductase HP0231 of Helicobacter pylori impacts HopQ-dependent CagA translocation. International Journal of Medical Microbiology, 2018, 308, 977-985.	1.5	10
259	Model-based analysis of influenza A virus replication in genetically engineered cell lines elucidates the impact of host cell factors on key kinetic parameters of virus growth. PLoS Computational Biology, 2019, 15, e1006944.	1.5	10
260	Isolating and maintaining highly polarized primary epithelial cells from normal human duodenum for growth as spheroid-like vesicles. In Vitro Cellular and Developmental Biology - Animal, 1997, 33, 536-545.	0.7	9
261	How CD4+ T cells may eliminate extracellular gastric Helicobacter?. Journal of Biotechnology, 2000, 83, 77-84.	1.9	9
262	Identification of novel Cyclooxygenase-2-dependent genes in Helicobacter pylori infection in vivo. Molecular Cancer, 2009, 8, 22.	7.9	9
263	Chlamydia trachomatisinfection prevents front-rear polarity of migrating HeLa cells. Cellular Microbiology, 2013, 15, 1059-1069.	1.1	9
264	Genetic characterization of an adapted pandemic 2009 H1N1 influenza virus that reveals improved replication rates in human lung epithelial cells. Virology, 2016, 492, 118-129.	1.1	8
265	Genome-Wide RNAi Screen for Viral Replication in Mammalian Cell Culture. Methods in Molecular Biology, 2011, 721, 383-395.	0.4	8
266	REPLICATION OF PHAGE fd DNA WITH PURIFIED PROTEINS. , 1980, , 579-588.		8
267	Variation of Pilin and Opacity-Associated Protein in Pathogenic Neisseria Species. , 1990, , 137-153.		7
268	Elimination of HER3â€'expressing breast cancer cells using aptamerâ€'siRNA chimeras. Experimental and Therapeutic Medicine, 2019, 18, 2401-2412.	0.8	7
269	Title is missing!. Cytotechnology, 1997, 19, 169-178.	0.7	6
270	Expression, purification and crystallization of CLK1 kinase $\hat{a}\in$ A potential target for antiviral therapy. Protein Expression and Purification, 2020, 176, 105742.	0.6	6

#	Article	IF	CITATIONS
271	Genetic Variation in the Pathogenic Neisseria Species. , 2003, , 142-164.		5
272	Long-term effects of natural amino acids on infection with Chlamydia trachomatis. Microbial Pathogenesis, 2008, 44, 438-447.	1.3	5
273	The Sweeping Role of Cholesterol Depletion in the Persistence of Helicobacter pylori Infections. Current Topics in Microbiology and Immunology, 2019, 421, 209-227.	0.7	5
274	Mechanistic dissection unmasks colibactin as a prevalent mutagenic driver of cancer. Cancer Cell, 2021, 39, 1439-1441.	7.7	5
275	C-terminal glycine-histidine tagging of the outer membrane protein Iga β ofNeisseria gonorrhoeae. FEMS Microbiology Letters, 1995, 127, 249-254.	0.7	4
276	Neisseria., 2001,, 559-618.		3
277	Adult Stem Cell Niches â€" Stem Cells in the Female Reproductive System. , 2014, , .		2
278	Usage of murine T-cell hybridoma cells as responder cells reveals interference of Helicobacter pylori with human dendritic cell-mediated antigen presentation. European Journal of Microbiology and Immunology, 2016, 6, 306-311.	1.5	2
279	Helicobacter pylori vaccine development based on combined subproteome analysis., 0,, 21-29.		0
280	High-content screening in infectious diseases: new drugs against bugs. , 0, , 108-138.		0
281	Integrated Phosphoproteome and Transcriptome Analysis Reveals Chlamydia-induced Epithelial-to-mesenchymal Transition in Host Cells. SSRN Electronic Journal, 0, , .	0.4	0
282	A Future for a Vaccine Against the Cancer-Inducing Bacterium Helicobacter pylori?., 2020,, 579-596.		0
283	Modulation of Host Cell Metabolism by <i>Chlamydia trachomatis</i> ., 0, , 267-276.		0
284	Tarp regulates early <i>Chlamydia</i> -induced host cell survival through interactions with the human adaptor protein SHC1. Journal of Experimental Medicine, 2010, 207, i23-i23.	4.2	0
285	Molecular principles of antigenic variation in Neisseria gonorrhoeae. , 1988, , 269-272.		0
286	ALPK1 and TIFA Dependent Innate Immune Response Triggered by the <i>Helicobacter pylori </i> Type IV Secretion System. SSRN Electronic Journal, 0, , .	0.4	0
287	The Immunoproteome of H. pylori. , 2004, , 317-338.		0