Sonia Eiras Penas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1053071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteomic analysis of epicardial and subcutaneous adipose tissue reveals differences in proteins involved in oxidative stress. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H202-H209.	1.5	133
2	Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability. Cardiovascular Research, 2018, 114, 336-346.	1.8	131
3	Extension of coronary artery disease is associated with increased IL-6 and decreased adiponectin gene expression in epicardial adipose tissue. Cytokine, 2008, 43, 174-180.	1.4	107
4	Coronary artery disease is associated with higher epicardial Retinolâ€binding protein 4 (RBP4) and lower glucose transporter (GLUT) 4 levels in epicardial and subcutaneous adipose tissue. Clinical Endocrinology, 2012, 76, 51-58.	1.2	47
5	Relationship between epicardial adipose tissue adipocyte size and MCP-1 expression. Cytokine, 2010, 51, 207-212.	1.4	37
6	High released lactate by epicardial fat from coronary artery disease patients is reduced by dapagliflozin treatment. Atherosclerosis, 2020, 292, 60-69.	0.4	31
7	Changes in lipid transport-involved proteins of epicardial adipose tissue associated with coronary artery disease. Atherosclerosis, 2012, 224, 492-499.	0.4	29
8	Orosomucoid secretion levels by epicardial adipose tissue as possible indicator of endothelial dysfunction in diabetes mellitus or inflammation in coronary artery disease. Atherosclerosis, 2014, 235, 281-288.	0.4	27
9	Higher ACE2 expression levels in epicardial cells than subcutaneous stromal cells from patients with cardiovascular disease: Diabetes and obesity as possible enhancer. European Journal of Clinical Investigation, 2021, 51, e13463.	1.7	24
10	Impaired Adipogenesis and Insulin Resistance in Epicardial Fat-Mesenchymal Cells From Patients With Cardiovascular Disease. Journal of Cellular Physiology, 2014, 229, 1722-1730.	2.0	23
11	Differential Association of S100A9, an Inflammatory Marker, and p53, a Cell Cycle Marker, Expression with Epicardial Adipocyte Size in Patients with Cardiovascular Disease. Inflammation, 2014, 37, 1504-1512.	1.7	23
12	Baseline epicardial adipose tissue adiponectin levels predict cardiovascular outcomes: A long-term follow-up study. Cytokine, 2012, 60, 674-680.	1.4	22
13	Glucose and Inflammatory Cells Decrease Adiponectin in Epicardial Adipose Tissue Cells: Paracrine Consequences on Vascular Endothelium. Journal of Cellular Physiology, 2016, 231, 1015-1023.	2.0	22
14	Omentin treatment of epicardial fat improves its antiâ€inflammatory activity and paracrine benefit on smooth muscle cells. Obesity, 2017, 25, 1042-1049.	1.5	22
15	Cholinergic activity regulates the secretome of epicardial adipose tissue: Association with atrial fibrillation. Journal of Cellular Physiology, 2019, 234, 10512-10522.	2.0	22
16	Adiponectin and p53 <scp>mRNA</scp> in epicardial and subcutaneous fat from heart failure patients. European Journal of Clinical Investigation, 2014, 44, 29-37.	1.7	21
17	Updates on epicardial adipose tissue mechanisms on atrial fibrillation. Obesity Reviews, 2021, 22, e13277.	3.1	21
18	Myocardium Metabolism in Physiological and Pathophysiological States: Implications of Epicardial Adipose Tissue and Potential Therapeutic Targets. International Journal of Molecular Sciences, 2020, 21, 2641.	1.8	20

#	Article	IF	CITATIONS
19	Differential behaviour of epicardial adipose tissue-secretomes with high and low orosomucoid levels from patients with cardiovascular disease in H9C2 cells. Molecular and Cellular Endocrinology, 2015, 416, 77-87.	1.6	17
20	Plasma FABP4 levels are associated with left atrial fat volume in persistent atrial fibrillation and predict recurrence after catheter ablation. International Journal of Cardiology, 2019, 292, 131-135.	0.8	14
21	Sea cucumbers with an anti-inflammatory effect on endothelial cells and subcutaneous but not on epicardial adipose tissue. Food and Function, 2016, 7, 953-963.	2.1	13
22	Orosomucoid as prognosis factor associated with inflammation in acute or nutritional status in chronic heart failure. International Journal of Cardiology, 2017, 228, 488-494.	0.8	12
23	Inflammatory and lipid regulation by cholinergic activity in epicardial stromal cells from patients who underwent openâ€heart surgery. Journal of Cellular and Molecular Medicine, 2020, 24, 10958-10969.	1.6	12
24	Nutrients restriction upregulates adiponectin in epicardial or subcutaneous adipose tissue: impact in <i>de novo</i> heart failure patients. International Journal of Medical Sciences, 2018, 15, 417-424.	1.1	11
25	CD5L, Macrophage Apoptosis Inhibitor, Was Identified in Epicardial Fat-Secretome and Regulated by Isoproterenol From Patients With Heart Failure. Frontiers in Physiology, 2020, 11, 620.	1.3	10
26	Non classical Monocytes Levels, Increased by Subcutaneous Fat-Secretome, Are Associated with Less Rehospitalization after Heart Failure Admission. Journal of Cardiovascular Translational Research, 2017, 10, 16-26.	1.1	7
27	Differential behavior between S100A9 and adiponectin in coronary artery disease. Plasma or epicardial fat. Life Sciences, 2014, 100, 147-151.	2.0	5
28	Synergism between obesity and <scp>HFpEF</scp> on neutrophils phenotype and its regulation by adipose tissueâ€molecules and <scp>SGLT2i</scp> dapagliflozin. Journal of Cellular and Molecular Medicine, 2022, 26, 4416-4427.	1.6	5
29	Diabesity in Elderly Cardiovascular Disease Patients: Mechanisms and Regulators. International Journal of Molecular Sciences, 2022, 23, 7886.	1.8	5
30	Long-Term Weight Gain Associated With High Omentin Levels at Hospital Discharge Improves Prognosis of Patients Following Acute Heart Failure. Journal of Cardiovascular Translational Research, 2019, 12, 231-239.	1.1	4
31	A New Biomarker Tool for Risk Stratification in "de novo―Acute Heart Failure (OROME). Frontiers in Physiology, 2021, 12, 736245.	1.3	3
32	The Effect of Mineralocorticoid Receptor 3 Antagonists on Anti-Inflammatory and Anti-Fatty Acid Transport Profile in Patients with Heart Failure. Cells, 2022, 11, 1264.	1.8	3
33	Research update for articles published in <scp>EJCI</scp> in 2014. European Journal of Clinical Investigation, 2016, 46, 880-894.	1.7	2
34	Adiponectin as Biomarker in Coronary Artery Disease. , 2016, , 635-651.		1
35	Adiponectin as Biomarker in Coronary Artery Disease. , 2015, , 1-17.		0