
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1053055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Food choices, health and environment: Effects of cutting Europe's meat and dairy intake. Global Environmental Change, 2014, 26, 196-205.	3.6	573
2	Amplified ozone pollution in cities during the COVID-19 lockdown. Science of the Total Environment, 2020, 735, 139542.	3.9	516
3	Ozone levels in European and USA cities are increasing more than at rural sites, while peak values are decreasing. Environmental Pollution, 2014, 192, 295-299.	3.7	207
4	Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environment International, 2019, 131, 104966.	4.8	205
5	Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research. Elementa, 2018, 6, 1.	1.1	196
6	Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity. Science Advances, 2020, 6, eabc1176.	4.7	181
7	Projected global ground-level ozone impacts on vegetation under different emission and climate scenarios. Atmospheric Chemistry and Physics, 2017, 17, 12177-12196.	1.9	164
8	Exposure to PM10, NO2, and O3 and impacts on human health. Environmental Science and Pollution Research, 2017, 24, 2781-2789.	2.7	160
9	Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities. Atmospheric Environment, 2013, 79, 705-715.	1.9	150
10	Urban population exposure to air pollution in Europe over the last decades. Environmental Sciences Europe, 2021, 33, 28.	2.6	148
11	Should we see urban trees as effective solutions to reduce increasing ozone levels in cities?. Environmental Pollution, 2018, 243, 163-176.	3.7	119
12	Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: Insights from Italy. Environment International, 2019, 125, 320-333.	4.8	113
13	Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: Current research and future directions. Environmental Pollution, 2017, 227, 194-206.	3.7	98
14	Predicting the effect of ozone on vegetation via linear non-threshold (LNT), threshold and hormetic dose-response models. Science of the Total Environment, 2019, 649, 61-74.	3.9	97
15	An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests. Science of the Total Environment, 2016, 541, 729-741.	3.9	96
16	Ozone weekend effect in cities: Deep insights for urban air pollution control. Environmental Research, 2020, 191, 110193.	3.7	95
17	Effect of O3, PM10 and PM2.5 on cardiovascular and respiratory diseases in cities of France, Iran and Italy. Environmental Science and Pollution Research, 2019, 26, 32645-32665.	2.7	89
18	Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems. Environmental Pollution, 2016, 213, 977-987.	3.7	88

#	Article	IF	CITATIONS
19	Health risk assessment of exposure to the Middle-Eastern Dust storms in the Iranian megacity of Kermanshah. Public Health, 2017, 148, 109-116.	1.4	86
20	Nationwide ground-level ozone measurements in China suggest serious risks to forests. Environmental Pollution, 2018, 237, 803-813.	3.7	84
21	Comparing concentrationâ€based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests. Global Change Biology, 2016, 22, 1608-1627.	4.2	83
22	Acute myocardial infarction and COPD attributed to ambient SO2 in Iran. Environmental Research, 2017, 156, 683-687.	3.7	77
23	A comparative study of hospital admissions for respiratory diseases during normal and dusty days in Iran. Environmental Science and Pollution Research, 2017, 24, 18152-18159.	2.7	75
24	Poplar response to cadmium and lead soil contamination. Ecotoxicology and Environmental Safety, 2017, 144, 482-489.	2.9	72
25	Hospital admissions in Iran for cardiovascular and respiratory diseases attributed to the Middle Eastern Dust storms. Environmental Science and Pollution Research, 2017, 24, 16860-16868.	2.7	70
26	Inhibition of HIV-1 replication by cyclopentenone prostaglandins in acutely infected human cells. Evidence for a transcriptional block Journal of Clinical Investigation, 1996, 97, 1795-1803.	3.9	70
27	Measuring, modelling and testing ozone exposure, flux and effects on vegetation in southern European conditions—What does not work? A review from Italy. Environmental Pollution, 2007, 146, 648-658.	3.7	67
28	Impacts of air pollution on cultural heritage corrosion at European level: What has been achieved and what are the future scenarios. Environmental Pollution, 2016, 218, 586-594.	3.7	67
29	Corrosion on cultural heritage buildings in Italy: A role for ozone?. Environmental Pollution, 2009, 157, 1513-1520.	3.7	65
30	Mortality and morbidity due to ambient air pollution in Iran. Clinical Epidemiology and Global Health, 2019, 7, 222-227.	0.9	65
31	A multi-sites analysis on the ozone effects on Gross Primary Production of European forests. Science of the Total Environment, 2016, 556, 1-11.	3.9	63
32	A spatially-explicit method to assess the dry deposition of air pollution by urban forests in the city of Florence, Italy. Urban Forestry and Urban Greening, 2017, 27, 221-234.	2.3	60
33	Why Should We Calculate Complex Indices of Ozone Exposure? Results from Mediterranean Background Sites. Environmental Monitoring and Assessment, 2007, 128, 19-30.	1.3	59
34	Air Pollution Removal by Green Infrastructures and Urban Forests in the City of Florence. Agriculture and Agricultural Science Procedia, 2016, 8, 243-251.	0.6	59
35	Mortality and morbidity for cardiopulmonary diseases attributed to PM2.5 exposure in the metropolis of Rome, Italy. European Journal of Internal Medicine, 2018, 57, 49-57.	1.0	59
36	Antiviral Effect of Hyperthermic Treatment in Rhinovirus Infection. Antimicrobial Agents and Chemotherapy, 1999, 43, 822-829.	1.4	44

#	Article	IF	CITATIONS
37	Chronic obstructive pulmonary diseases related to outdoor PM10, O3, SO2, and NO2 in a heavily polluted megacity of Iran. Environmental Science and Pollution Research, 2018, 25, 17726-17734.	2.7	44
38	Metrics of ozone risk assessment for Southern European forests: Canopy moisture content as a potential plant response indicator. Atmospheric Environment, 2015, 120, 182-190.	1.9	42
39	Stomatal conductance models for ozone risk assessment at canopy level in two Mediterranean evergreen forests. Agricultural and Forest Meteorology, 2017, 234-235, 212-221.	1.9	40
40	Future impacts of nitrogen deposition and climate change scenarios on forest crown defoliation. Environmental Pollution, 2014, 194, 171-180.	3.7	39
41	Assessing the role of soil water limitation in determining the Phytotoxic Ozone Dose (PODY) thresholds. Atmospheric Environment, 2016, 147, 88-97.	1.9	39
42	Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone. Atmospheric Chemistry and Physics, 2018, 18, 5747-5763.	1.9	39
43	Trends in tropospheric ozone concentrations and forest impact metrics in Europe over the time period 2000–2014. Journal of Forestry Research, 2021, 32, 543-551.	1.7	39
44	Global diurnal and nocturnal parameters of stomatal conductance in woody plants and major crops. Global Ecology and Biogeography, 2018, 27, 257-275.	2.7	38
45	Toward stomatal–flux based forest protection against ozone: The MOTTLES approach. Science of the Total Environment, 2019, 691, 516-527.	3.9	38
46	High spatial resolution WRF-Chem model over Asia: Physics and chemistry evaluation. Atmospheric Environment, 2021, 244, 118004.	1.9	38
47	Long-term exposure to ambient PM2.5 and impacts on health in Rome, Italy. Clinical Epidemiology and Global Health, 2020, 8, 531-535.	0.9	37
48	Inhibition of Sindbis virus replication by cyclopentenone prostaglandins: A cell-mediated event associated with heat-shock protein synthesis. Antiviral Research, 1993, 20, 209-222.	1.9	36
49	A quantitative assessment of hormetic responses of plants to ozone. Environmental Research, 2019, 176, 108527.	3.7	35
50	Epidemiological derivation of flux-based critical levels for visible ozone injury in European forests. Journal of Forestry Research, 2020, 31, 1509-1519.	1.7	35
51	Inhibition of vesicular stomatitis virus replication by Δ12-prostaglandin J2 is regulated at two separate levels and is associated with induction of stress protein synthesis. Antiviral Research, 1993, 20, 193-208.	1.9	34
52	Random Forests Analysis: a Useful Tool for Defining the Relative Importance of Environmental Conditions on Crown Defoliation. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	32
53	Currently legislated decreases in nitrogen deposition will yield only limited plant species recovery in European forests. Environmental Research Letters, 2018, 13, 125010.	2.2	32
54	Air quality modeling for health risk assessment of ambient PM ₁₀ , PM _{2.5} and SO ₂ in Iran. Human and Ecological Risk Assessment (HERA), 2019, 25, 1298-1310.	1.7	32

#	Article	IF	CITATIONS
55	Emerging challenges of ozone impacts on asian plants: actions are needed to protect ecosystem health and Sustainability, 2021, 7, .	1.5	32
56	Δ ¹² -Prostaglandin J ₂ Is a Potent Inhibitor of Influenza A Virus Replication. Antimicrobial Agents and Chemotherapy, 2000, 44, 200-204.	1.4	31
57	Trends and inter-relationships of ground-level ozone metrics and forest health in Lithuania. Science of the Total Environment, 2019, 658, 1265-1277.	3.9	31
58	Ozone modelling and mapping for risk assessment: An overview of different approaches for human and ecosystems health. Environmental Research, 2022, 211, 113048.	3.7	31
59	Strategic roadmap to assess forest vulnerability under air pollution and climate change. Global Change Biology, 2022, 28, 5062-5085.	4.2	31
60	Commentary: EPA's proposed expansion of dose-response analysis is a positive step towards improving its ecological risk assessment. Environmental Pollution, 2019, 246, 566-570.	3.7	30
61	Epidemiological analysis of ozone and nitrogen impacts on vegetation – Critical evaluation and recommendations. Science of the Total Environment, 2017, 603-604, 785-792.	3.9	29
62	Inhibition of HSP70 Expression by Calcium Ionophore A23187 in Human Cells. Journal of Biological Chemistry, 1996, 271, 16111-16118.	1.6	27
63	Growing season extension affects ozone uptake by European forests. Science of the Total Environment, 2019, 669, 1043-1052.	3.9	27
64	Antiviral effect of short hyperthermic treatment at specific stages of vesicular stomatitis virus replication cycle. Journal of General Virology, 1993, 74, 1685-1690.	1.3	26
65	Exploring sources of uncertainty in premature mortality estimates from fine particulate matter: the case of China. Environmental Research Letters, 2020, 15, 064027.	2.2	26
66	High spatial resolution ozone risk-assessment for Asian forests. Environmental Research Letters, 2020, 15, 104095.	2.2	23
67	High resolution estimates of the corrosion risk for cultural heritage in Italy. Environmental Pollution, 2017, 226, 260-267.	3.7	22
68	The role of plant phenology in stomatal ozone flux modeling. Global Change Biology, 2018, 24, 235-248.	4.2	22
69	Assessment of present and future risk to Italian forests and human health: Modelling and mapping. Environmental Pollution, 2009, 157, 1407-1412.	3.7	21
70	Modeling of particulate matter dispersion from a cement plant: Upwind-downwind case study. Journal of Environmental Chemical Engineering, 2018, 6, 3104-3110.	3.3	21
71	Geostatistics as a validation tool for setting ozone standards for durum wheat. Environmental Pollution, 2010, 158, 536-542.	3.7	19
72	Ozone exposure affects tree defoliation in a continental climate. Science of the Total Environment, 2017, 596-597, 396-404.	3.9	19

#	Article	IF	CITATIONS
73	Challenges, gaps and opportunities in investigating the interactions of ozone pollution and plant ecosystems. Science of the Total Environment, 2020, 709, 136188.	3.9	19
74	Testing visible ozone injury within a Light Exposed Sampling Site as a proxy for ozone risk assessment for European forests. Journal of Forestry Research, 2021, 32, 1351-1359.	1.7	18
75	Assessing ozone and nitrogen impact on net primary productivity with a Generalised non-Linear Model. Environmental Pollution, 2013, 172, 250-263.	3.7	17
76	Five-year volume growth of European beech does not respond to ozone pollution in Italy. Environmental Science and Pollution Research, 2018, 25, 8233-8239.	2.7	17
77	Modelling study of soil C, N and pH response to air pollution and climate change using European LTER site observations. Science of the Total Environment, 2018, 640-641, 387-399.	3.9	17
78	Short and long-term impacts of ambient ozone on health in Ahvaz, Iran. Human and Ecological Risk Assessment (HERA), 2019, 25, 1336-1351.	1.7	16
79	Flux-Based Ozone Risk Assessment for a Plant Injury Index (PII) in Three European Cool-Temperate Deciduous Tree Species. Forests, 2020, 11, 82.	0.9	16
80	Economic impacts of ambient ozone pollution on wood production in Italy. Scientific Reports, 2021, 11, 154.	1.6	14
81	Induction of the heat-shock response by antiviral prostaglandins in human cells infected with human immunodeficiency virus type 1. FEBS Journal, 1998, 256, 334-341.	0.2	12
82	Impact of ground-level ozone on Mediterranean forest ecosystems health. Science of the Total Environment, 2021, 783, 147063.	3.9	12
83	Towards long-term sustainability of stomatal ozone flux monitoring at forest sites. , 2022, 2, 100018.		12
84	Ozone biomonitoring: A versatile tool for science, education and regulation. Current Opinion in Environmental Science and Health, 2020, 18, 7-13.	2.1	11
85	Legislative and functional aspects of different metrics used for ozone risk assessment to forests. Environmental Pollution, 2022, 295, 118690.	3.7	9
86	New functions for estimating AOT40 from ozone passive sampling. Atmospheric Environment, 2014, 95, 82-88.	1.9	8
87	Testing approaches for calculating stomatal ozone fluxes from passive samplers. Science of the Total Environment, 2016, 572, 56-67.	3.9	8
88	Grapevine and Ozone: Uptake and Effects. Climate, 2019, 7, 140.	1.2	8
89	Temporal Incidence and Prevalence of Bronchitis and Morbidities from Exposure to Ambient PM _{2.5} and PM ₁₀ . Environmental Justice, 2021, 14, 267-276.	0.8	8
90	Light Intensity Affects Ozone-Induced Stomatal Sluggishness in Snapbean. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	7

#	Article	IF	CITATIONS
91	On the atmospheric ozone monitoring methodologies. Current Opinion in Environmental Science and Health, 2020, 18, 40-46.	2.1	7
92	The Potential Use of Indigobush (Amorpha fruticosa L.) as Natural Resource of Biologically Active Compounds. South-East European Forestry, 2015, 6, 171-178.	0.1	5
93	A New Wetness Index to Evaluate the Soil Water Availability Influence on Gross Primary Production of European Forests. Climate, 2019, 7, 42.	1.2	4
94	Assessment of Atmospheric Deposition and Vitality Indicators in Mediterranean Forest Ecosystems. Sustainability, 2019, 11, 6805.	1.6	4
95	Editorial: Interactions Between Ozone Pollution and Forest Ecosystems. Frontiers in Forests and Global Change, 2021, 3, .	1.0	4
96	Discussion on the new functions for estimating AOT40 from passive sampling. Atmospheric Environment, 2014, 98, 704-706.	1.9	2
97	Comparison between ozone monitoring data and modelling data, in Italy, from the perspective of health indicator assessments. , 2008, , .		1
98	Nitrogen Budget and Statistical Entropy Analysis of the Tiber River Catchment, a Highly Anthropized Environment. Soil Systems, 2022, 6, 17.	1.0	1
99	Air pollution and climate change threats to plant ecosystems. Environmental Research, 2022, 212, 113420.	3.7	1
100	Response on â€~comparing concentrationâ€based (<scp>AOT</scp> 40) and stomatal uptake (<scp>PODY</scp>) metrics for ozone risk assessment to European forests'. Global Change Biology, 2017, 23, e3-e4.	4.2	0
101	Mediterranean forest ecosystems monitoring in Croatia. Journal of Biotechnology, 2018, 280, S5-S6.	1.9	0
102	Economic and Life Cycle Analysis of Passive and Active Monitoring of Ozone for Forest Protection. Environments - MDPI, 2021, 8, 104.	1.5	0