MaÅ,gorzata Wachowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1052930/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron excess affects release of neutrophil extracellular traps and reactive oxygen species but does not influence other functions of neutrophils. Immunology and Cell Biology, 2022, 100, 87-100.	1.0	6
2	The Role of Neutrophils in the Pathogenesis of Chronic Lymphocytic Leukemia. International Journal of Molecular Sciences, 2022, 23, 365.	1.8	4
3	Evaluation of the Antitumor Immune Response Following Photofrin-Based PDT in Combination with the Epigenetic Agent 5-Aza-2′-Deoxycytidine. Methods in Molecular Biology, 2022, 2451, 559-567.	0.4	1
4	Lack of Functional P110δAffects Expression of Activation Marker CD80 but Does Not Influence Functions of Neutrophils. International Journal of Molecular Sciences, 2022, 23, 6361.	1.8	0
5	Influence of iron- and zinc-chelating agents on neutrophil extracellular trap formation. Central-European Journal of Immunology, 2021, 46, 135-139.	0.4	1
6	Dynamic Changes in the Ability to Release Neutrophil ExtraCellular Traps in the Course of Childhood Acute Leukemias. International Journal of Molecular Sciences, 2021, 22, 821.	1.8	9
7	Zinc Supplementation Modulates NETs Release and Neutrophils' Degranulation. Nutrients, 2021, 13, 51.	1.7	12
8	Nitric oxide and peroxynitrite trigger and enhance release of neutrophil extracellular traps. Cellular and Molecular Life Sciences, 2020, 77, 3059-3075.	2.4	47
9	Overexpression of ATG5 Gene Makes Granulocyte-Like HL-60 Susceptible to Release Reactive Oxygen Species. International Journal of Molecular Sciences, 2020, 21, 5194.	1.8	5
10	Inhibition of IDO leads to IL-6-dependent systemic inflammation in mice when combined with photodynamic therapy. Cancer Immunology, Immunotherapy, 2020, 69, 1101-1112.	2.0	13
11	Neutrophil extracellular traps generation and degradation in patients with granulomatosis with polyangiitis and systemic lupus erythematosus. Autoimmunity, 2019, 52, 126-135.	1.2	20
12	Novel calcineurin A (PPP3CA) variant associated with epilepsy, constitutive enzyme activation and downregulation of protein expression. European Journal of Human Genetics, 2019, 27, 61-69.	1.4	26
13	The influence of agents differentiating <scp>HL</scp> â€60 cells toward granulocyteâ€ŀike cells on their ability to release neutrophil extracellular traps. Immunology and Cell Biology, 2018, 96, 413-425.	1.0	41
14	Immunomodulatory Role of Vitamin D: A Review. Advances in Experimental Medicine and Biology, 2018, 1108, 13-23.	0.8	77
15	Inhibition of lymphangiogenesis impairs antitumour effects of photodynamic therapy and checkpoint inhibitors in mice. European Journal of Cancer, 2017, 83, 19-27.	1.3	39
16	Investigation of cell death mechanisms in human lymphatic endothelial cells undergoing photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2016, 14, 57-65.	1.3	12
17	The dual role of tumor lymphatic vessels in dissemination of metastases and immune response development. Oncolmmunology, 2016, 5, e1182278.	2.1	31
18	Low dose of GRP78-targeting subtilase cytotoxin improves the efficacy of photodynamic therapy in vivo. Oncology Reports, 2016, 35, 3151-3158.	1.2	4

#	Article	IF	CITATIONS
19	Immunological aspects of antitumor photodynamic therapy outcome. Central-European Journal of Immunology, 2015, 4, 481-485.	0.4	55
20	Targeting Epigenetic Processes in Photodynamic Therapy-Induced Anticancer Immunity. Frontiers in Oncology, 2015, 5, 176.	1.3	25
21	SK053 triggers tumor cells apoptosis by oxidative stress-mediated endoplasmic reticulum stress. Biochemical Pharmacology, 2015, 93, 418-427.	2.0	26
22	Epigenetic remodeling combined with photodynamic therapy elicits anticancer immune responses. Oncolmmunology, 2014, 3, e28837.	2.1	10
23	Optimization and regeneration kinetics of lymphatic-specific photodynamic therapy in the mouse dermis. Angiogenesis, 2014, 17, 347-357.	3.7	29
24	5-Aza-2′-deoxycytidine potentiates antitumour immune response induced by photodynamic therapy. European Journal of Cancer, 2014, 50, 1370-1381.	1.3	56
25	GRP78-targeting subtilase cytotoxin sensitizes cancer cells to photodynamic therapy. Cell Death and Disease, 2013, 4, e741-e741.	2.7	52
26	Synergistic antitumor effect of JAWSII dendritic cells and interleukin 12 in a melanoma mouse model. Oncology Reports, 2013, 29, 1208-1214.	1.2	11
27	Prenyltransferases Regulate CD20 Protein Levels and Influence Anti-CD20 Monoclonal Antibody-mediated Activation of Complement-dependent Cytotoxicity. Journal of Biological Chemistry, 2012, 287, 31983-31993.	1.6	19
28	Aminolevulinic Acid (ALA) as a Prodrug in Photodynamic Therapy of Cancer. Molecules, 2011, 16, 4140-4164.	1.7	198
29	Approaches to improve photodynamic therapy of cancer. Frontiers in Bioscience - Landmark, 2011, 16, 208.	3.0	44
30	Prenyl Transferases Are Involved in the Regulation of CD20 Levels and Influence Anti-CD20 Monoclonal Antibody-Mediated Activation of Complement-Dependent Cytotoxicity,. Blood, 2011, 118, 3722-3722.	0.6	0